In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control...In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser...The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.展开更多
This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechani...This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.展开更多
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital volta...The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital voltage regulator, which is based on a DSP chip — TMS320C32. A novel fuzzy filter control structure is developed from normal fuzzy control strategy. And the fuzzy filter control algorithm is adopted in the hardware platform successfully. The computer simulation has been conducted. Some control parameters have been obtained through the simulation. The same parameters have been applied in the digital regulation experiments on a brushless AC generator. In the experiment, the digital voltage regulator results in good responses. From the experiment results, it can be seen that the new control algorithm is efficient for the digital voltage regulator.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
Objective For a brushless AC generator with a rotary rectifier, it is necessary and significant to model and simulate at normal and fault operation states. Methods Two new concepts, namely, Simulink signals and PSB(...Objective For a brushless AC generator with a rotary rectifier, it is necessary and significant to model and simulate at normal and fault operation states. Methods Two new concepts, namely, Simulink signals and PSB(Power System Blockset) variables, are proposed, and the difference between the two concepts is clarified. Based on the new model for synchronous machines \, a simulation model for a brushless AC generator with a rotary rectifier is constructed by Matlab/Simulink/PSB. This new model, which has a speed input terminal and an exciting voltage input one, can simulate the real electrical characters and direct mechanical connection between two synchronous machines perfectly. The rotary rectifier is a three-phase full-wave bridge rectifier which consists of six diodes. The model for the diodes is a macro-model which possesses much better accuracy than an ideal one of switches. Results Based on the present model, some simulation results such as exciting current waveform, phase current waveform and phase voltbge waveform are afftained at several operation conditions. Conclusion The simulation for a brushless AC generator with a rotary rectifier is demonstrated at normal and fault operation states, respectively. The results confirm the presented method.展开更多
VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a bac...VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.展开更多
The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The t...The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The tracking characteristic of the prime-mover is mandatory for setting the reference value of the electromagnetic torque developed by the generator, by means of which the switching pattern of the AC/DC converter is determined at each sampling time interval. The above generator performances are possible under certain constrained values of reference torque and rotor speed, due to the DC-bus voltage saturation. The knowledge of these quantities are necessary for the best matching of the prime-mover with the brushless DC generator and the AC/DC converter. In this paper, these constraints are investigated in detail with the aim of highlighting the best operation of the conversion s) stem under a constant DC bus voltage.展开更多
To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different...To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different wind farm integration on grid typically in China has been presented. The influence of the variations of transient reactance, negative sequence reactance and rotary inertia on critical clearing time of power system transient stability is analyzed by time-domain simulation. Mixture operation of DFIG and PMSG to optimize the stability of system has been analyzed firstly. The digital simulation results show that doubly-fed induction wind turbines is a better choice to meet the requirement of system instability due to large wind farm integration in comparison with direct-drive PM synchronous wind turbines. With a rather large rotary inertia, the proper ratio of direct-drive PM synchronous wind turbines used in wind farm could be comprehensive planning by optimized the stability of system. Analysis of this paper should be provided as academic reference for improving design of wind farm system.展开更多
Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capa...Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.展开更多
This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction g...This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.展开更多
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations t...This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.展开更多
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The cont...The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.展开更多
This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT conve...This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.展开更多
文摘In this paper, based on the analysis of the mathematical model in a common synchronous reference frame of the brushless doubly-fed generator (BDFG), the grid connection strategy and maximum energy extraction control were both analyzed. Besides, the transient simula- tion of no-load model and generation model of the BDFG have been developed on the MATLAB/Simulink platform. The test results during cutting-in grid confirmed the good dynamic performance of grid synchronization and effective power control approach for the BDFG-based variable speed wind turbines.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grants 51707079 and 51877093in part by the National Key Research and Development Program of China(Project ID:YS2018YFGH000200)in part by the Fundamental Research Funds for the Central Universities(Project ID:2019kfyXMBZ031).
文摘The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.
基金supported in part by National Natural Science Foundation of China under Grant 61973073supported by Jiangsu Province Higher Education Basic Science (Natural Science) Research Project under Grant 23KJB470022
文摘This article proposes a dual-negative-objective coordinated control strategy for brushless doubly fed induction generator(BDFIG)based wind power generation system under unbalanced grid voltage.To alleviate the mechanical stress and impaction on rotating shaft,the negative control objective(NCO)of machine side converter(MSC)is set to suppress the ripple of electromagnetic torque.While the NCO of grid side converter(GSC)is selected to suppress the oscillation of total output active power or the unbalanced degree of total output current for BDFIG generation system.In comparison with traditional single converter control scheme of the MSC or GSC,dual NCOs can be satisfied at the same time due to the enlarged freedom degree in the proposed improved coordinated control system for back-toback converters.The effectiveness of proposed control strategy is validated by simulation and experimental results on a dual-cagerotor BDFIG(DCR-BDFIG)prototype.
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
基金Pre-research subject of the 9-th 5 year plan for National Defenc
文摘The transistor voltage regulators have been widely adopted in the brushless AC generators in aircraft. This paper researches the digital voltage regulator. The paper presents the hardware platform of the digital voltage regulator, which is based on a DSP chip — TMS320C32. A novel fuzzy filter control structure is developed from normal fuzzy control strategy. And the fuzzy filter control algorithm is adopted in the hardware platform successfully. The computer simulation has been conducted. Some control parameters have been obtained through the simulation. The same parameters have been applied in the digital regulation experiments on a brushless AC generator. In the experiment, the digital voltage regulator results in good responses. From the experiment results, it can be seen that the new control algorithm is efficient for the digital voltage regulator.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
文摘Objective For a brushless AC generator with a rotary rectifier, it is necessary and significant to model and simulate at normal and fault operation states. Methods Two new concepts, namely, Simulink signals and PSB(Power System Blockset) variables, are proposed, and the difference between the two concepts is clarified. Based on the new model for synchronous machines \, a simulation model for a brushless AC generator with a rotary rectifier is constructed by Matlab/Simulink/PSB. This new model, which has a speed input terminal and an exciting voltage input one, can simulate the real electrical characters and direct mechanical connection between two synchronous machines perfectly. The rotary rectifier is a three-phase full-wave bridge rectifier which consists of six diodes. The model for the diodes is a macro-model which possesses much better accuracy than an ideal one of switches. Results Based on the present model, some simulation results such as exciting current waveform, phase current waveform and phase voltbge waveform are afftained at several operation conditions. Conclusion The simulation for a brushless AC generator with a rotary rectifier is demonstrated at normal and fault operation states, respectively. The results confirm the presented method.
文摘VFT (variable frequency transformer) has been recently used as art alternative to HVDC (high voltage direct current) to control power flow between asynchronous networks. VFT consumes less reactive power than a back-to-back HVDC system, provides faster initial transient recovery, and has better natural damping capability. VFT is simply a DFIM (doubly-fed induction machine) where the machine torque controls the power flow from stator to rotor and vice versa. The main disadvantage of this VFT is the slip rings and brushes required for the rotor circuit, especially in bulk power transmission. The BDFM (brushless doubly-fed machine) with nested cage rotor machine is proved to be a comparable alternative to conventional DFIM in many applications with the advantage that all windings being in the stator frame with fixed output terminals. In this paper, the BDFM is used as a BVFT (brushless variable frequency transformer). A prototype machine is designed and simulated to verify the system validity.
文摘The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The tracking characteristic of the prime-mover is mandatory for setting the reference value of the electromagnetic torque developed by the generator, by means of which the switching pattern of the AC/DC converter is determined at each sampling time interval. The above generator performances are possible under certain constrained values of reference torque and rotor speed, due to the DC-bus voltage saturation. The knowledge of these quantities are necessary for the best matching of the prime-mover with the brushless DC generator and the AC/DC converter. In this paper, these constraints are investigated in detail with the aim of highlighting the best operation of the conversion s) stem under a constant DC bus voltage.
文摘To analyze the factors which affecting transient stability of power system, the dynamic model of doubly-fed induction generator and direct-drive PM synchronous generator has been built using PSCAD. Impact of different wind farm integration on grid typically in China has been presented. The influence of the variations of transient reactance, negative sequence reactance and rotary inertia on critical clearing time of power system transient stability is analyzed by time-domain simulation. Mixture operation of DFIG and PMSG to optimize the stability of system has been analyzed firstly. The digital simulation results show that doubly-fed induction wind turbines is a better choice to meet the requirement of system instability due to large wind farm integration in comparison with direct-drive PM synchronous wind turbines. With a rather large rotary inertia, the proper ratio of direct-drive PM synchronous wind turbines used in wind farm could be comprehensive planning by optimized the stability of system. Analysis of this paper should be provided as academic reference for improving design of wind farm system.
文摘Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.
文摘This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.
文摘This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.
文摘The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.
文摘This paper discusses the power outputs control of a grid-connected doubly-fed induction generator (DFIG) for a wind power generation systems. The DFIG structure control has a six diode rectifier and a PWM IGBT converter in order to control the power outputs of the DFIG driven by wind turbine. So, to supply commercially the electrical power to the grid without any problems related to power quality, the active and reactive powers (Ps, Qs) at the stator side of the DFIG are strictly controlled at a required level, which, in this paper, is realized with an optimized fuzzy logic controller based on the grid flux oriented control, which gives an optimal operation of the DFIG in sub-synchronous region, and the control of the stator power flow with the possibility of keeping stator power factor at a unity.