In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Th...In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.展开更多
基金Supported by NSFC(10971124,11001160)the National Science Foundation for Postdoctoral Scientists of China(20090461281)+1 种基金the DrStart-up Scientific Research Foundation of SUST(BJ10-17)the Natural Science Basic Research Planin Shaanxi Province of China(2011JQ1015)
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975043, 10947166 and 10775037the Foundation of Bureau of Education, Hebei Province, China under Grant No. 2009108the Natural Science Foundation of Hebei Province, China under Grant No. A2008000564)
文摘In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.