Reaction pathways for the formation of thiolate-gold nanoparticles are investigated by density functional theory (DFT) and a new mechanism upon solvent polarity and tetraalkylammonium is obtained. In solvents with h...Reaction pathways for the formation of thiolate-gold nanoparticles are investigated by density functional theory (DFT) and a new mechanism upon solvent polarity and tetraalkylammonium is obtained. In solvents with high polarities, [Au(I)SR]n polymers can be formed as the precursor of metal ions prior to the addition of a reducing agent; while a product of [Cl...AuCl(HSR)] is identified as the precursor in solvents with low polarities, such as toluene and chloroform. In addition, tetraalkylammonium also has an obvious effect on the reactions when it is used as a phase transfer agent in the two-phase synthesis. These findings offer a systematic analysis on the pathways to thiolate-stabilized nanoparticles and give a favorable explanation by comparison with those in an experimental system.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2012CB821500 and 2010CB923303)the National Natural Science Foundation of China(Grant Nos.51133002 and 21074053)the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘Reaction pathways for the formation of thiolate-gold nanoparticles are investigated by density functional theory (DFT) and a new mechanism upon solvent polarity and tetraalkylammonium is obtained. In solvents with high polarities, [Au(I)SR]n polymers can be formed as the precursor of metal ions prior to the addition of a reducing agent; while a product of [Cl...AuCl(HSR)] is identified as the precursor in solvents with low polarities, such as toluene and chloroform. In addition, tetraalkylammonium also has an obvious effect on the reactions when it is used as a phase transfer agent in the two-phase synthesis. These findings offer a systematic analysis on the pathways to thiolate-stabilized nanoparticles and give a favorable explanation by comparison with those in an experimental system.