城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该...城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。展开更多
当三相异步电动机发生机械振动时,主回路中接触不良的电气接触点在振动作用下会产生串联型故障电弧,进而影响电路安全甚至引发电气火灾。而振动条件会加剧了故障电弧信号的复杂性,因此本文以回路电流信号为研究对象,提出了一种振动条件...当三相异步电动机发生机械振动时,主回路中接触不良的电气接触点在振动作用下会产生串联型故障电弧,进而影响电路安全甚至引发电气火灾。而振动条件会加剧了故障电弧信号的复杂性,因此本文以回路电流信号为研究对象,提出了一种振动条件下的高实时性串联型故障电弧检测方法。首先通过构建滑动记忆矩阵对实验电流数据进行动态保存,其次通过正交方向改进局部三值化模式(orthogonality direction local ternary pattern,OD-LTP)提取滑动记忆矩阵的纹理特征,最终将统计的OD-LTP图像的灰度分布直方图幅值作为特征向量,通过基于沙猫群优化(sand cat swarm optimization,SCSO)的支持向量机(support vector machine,SVM)建立振动串联型故障电弧检测模型。本文通过对比不同矩阵参数,得到最佳的滑动记忆矩阵尺寸,最终所提方法对故障电弧识别的准确率达到99.2%。通过对不同工况、不同特征提取方法对比分析,表明本文提出方法不仅适用于不同工况运行的工业电机变频器系统,其相对于其他特征提取方法也具有较高的实时性。展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
文摘城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。
文摘当三相异步电动机发生机械振动时,主回路中接触不良的电气接触点在振动作用下会产生串联型故障电弧,进而影响电路安全甚至引发电气火灾。而振动条件会加剧了故障电弧信号的复杂性,因此本文以回路电流信号为研究对象,提出了一种振动条件下的高实时性串联型故障电弧检测方法。首先通过构建滑动记忆矩阵对实验电流数据进行动态保存,其次通过正交方向改进局部三值化模式(orthogonality direction local ternary pattern,OD-LTP)提取滑动记忆矩阵的纹理特征,最终将统计的OD-LTP图像的灰度分布直方图幅值作为特征向量,通过基于沙猫群优化(sand cat swarm optimization,SCSO)的支持向量机(support vector machine,SVM)建立振动串联型故障电弧检测模型。本文通过对比不同矩阵参数,得到最佳的滑动记忆矩阵尺寸,最终所提方法对故障电弧识别的准确率达到99.2%。通过对不同工况、不同特征提取方法对比分析,表明本文提出方法不仅适用于不同工况运行的工业电机变频器系统,其相对于其他特征提取方法也具有较高的实时性。
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.