期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quantitative estimation of bubble volume fraction of submarine seep plumes by modeling seismic oceanography data
1
作者 Tonggang HAN Jiangxin CHEN +3 位作者 Leonardo AZEVEDO Bingshou HE Huaning XU Rui YANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期673-686,共14页
Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the l... Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the leaked gases frequently exhibit a flame-like structure.We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume.Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data,by which synthetic seismic sections in different dominant frequencies could be numerically simulated,seismic attribute sections(e.g.,instantaneous amplitude,instantaneous frequency,and instantaneous phase)extracted,and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations.The instantaneous amplitude is positively correlated with bubble volume fraction,while the instantaneous frequency and bubble volume fraction are negatively correlated.In addition,information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction.As the bubble volume fraction increases,the information entropy of the instantaneous phase increases rapidly at the beginning,followed by a slight upward trend,and finally stabilizes.Therefore,under optimal noise conditions,the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes. 展开更多
关键词 seismic oceanography submarine seep plumes bubble volume fraction seismic response characteristics seismic attribute analysis quantitative analysis
下载PDF
Void fraction measurement of bubble and slug flow in a small channel using the multivision technique 被引量:5
2
作者 Huajun Li Xiaohu Zheng +3 位作者 Haifeng Ji Zhiyao Huang Baoliang Wang Haiqing Li 《Particuology》 SCIE EI CAS CSCD 2017年第4期11-16,共6页
Using the multivision technique, a new void fraction measurement method was developed for bubble and slug flow in a small channel. The multivision system was developed to obtain images of the two-phase flow in two per... Using the multivision technique, a new void fraction measurement method was developed for bubble and slug flow in a small channel. The multivision system was developed to obtain images of the two-phase flow in two perpendicular directions. The obtained images were processed--using image segmentation, image subtraction, Canny edge detection, binarization, and hole filling-to extract the phase boundaries and information about the bubble or slug parameters, With the extracted information, a new void fraction measurement model was developed and used to determine the void fraction of the two-phase flow. The proposed method was validated experimentally in horizontal and vertical channels with different inner diameters of 2.1, 2.9, and 4.0 mm, The proposed method of measuring the void fraction has better performance than the methods that use images acquired in only one direction, with a maximum absolute difference between the measured and reference values of less than 6%. 展开更多
关键词 Gas-liquid two-phase flow Void fraction bubble flow Slug flow Multivision technique
原文传递
Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation 被引量:1
3
作者 Yulong Shi Jiaxuan Yang +1 位作者 Jun Ma Congwei Luo 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期89-98,共10页
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and th... A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the OAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for OAF to enhance NOM removal. 展开更多
关键词 bubble surface modification Chitosan Disinfection by-product Dissolved air flotation Organic fraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部