Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented ...The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion.展开更多
In theoretical investigations of^(36)Ar published by Ge Ren et al.(Phys Lett B 138990,2024),^(36)Ar bubble nuclei,char acterized by central density depletions,were studied using the extended quantum molecular dynamics...In theoretical investigations of^(36)Ar published by Ge Ren et al.(Phys Lett B 138990,2024),^(36)Ar bubble nuclei,char acterized by central density depletions,were studied using the extended quantum molecular dynamics model.Three novel density distributions—microbubble,bubble,and cluster resonances—were identified,each showing distinc spectral signatures in the gamma-ray decay spectrum o the isoscalar monopole resonance.展开更多
External vibrations are known to be one of the promising ways to control the behavior of multiphase systems. Thecomputational modeling of the behavior of a gas bubble in a viscous liquid in a horizontal cylinder of sq...External vibrations are known to be one of the promising ways to control the behavior of multiphase systems. Thecomputational modeling of the behavior of a gas bubble in a viscous liquid in a horizontal cylinder of squarecross-section, which undergoes linearly polarized translational oscillations in weightless conditions, has been carried out. Under vibrations, the bubble moves towards the wall of the vessel with acceleration determined by theamplitudes and frequency of vibrations. Near the wall, at a distance of the order of the thickness of the viscousStokes boundary layer, the effects of viscosity become more important and, as a result, the bubble is repelled fromthe wall. After some oscillations, equilibrium conditions are attained where the attractive force balances the repulsive force;accordingly, the average position of the bubble ceases to change. The numerical modelling shows thatthe average behaviors of a deformable bubble near a wall under normal and tangential vibration are similar.展开更多
Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and...Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and EIS read-out circuits hinder the downsizing of cytometry devices.To address this,we developed a thermal-bubble-driven impedance flow cytometric application-specific integrated circuit(ASIC).The thermal-bubble micropump avoids external piping and equipment,enabling high-throughput designs.With a total of 36 cell counting channels,each measuring 884×220μm^(2),the chip significantly enhances the throughput of flow cytometers.Each cell counting channel incorporates a differential trans-impedance amplifier(TIA)to amplify weak biosensing signals.By eliminating the parasitic parameters created at the complementary metal-oxidesemiconductor transistor(CMOS)-micro-electromechanical systems(MEMS)interface,the counting accuracy can be increased.The on-chip TIA can adjust feedback resistance from 5 to 60 kΩto accommodate solutions with different impedances.The chip effectively classifies particles of varying sizes,demonstrated by the average peak voltages of 0.0529 and 0.4510 mV for 7 and 14μm polystyrene beads,respectively.Moreover,the counting accuracies of the chip for polystyrene beads and MSTO-211H cells are both greater than 97.6%.The chip exhibits potential for impedance flow cytometer at low cost,high-throughput,and miniaturization for the application of point-of-care diagnostics.展开更多
We present a dynamic model of cavitation bubbles in a cluster,in which the effects of evaporation,condensation,and bubble-bubble interactions are taken into consideration.Under different ultrasound conditions,we exami...We present a dynamic model of cavitation bubbles in a cluster,in which the effects of evaporation,condensation,and bubble-bubble interactions are taken into consideration.Under different ultrasound conditions,we examine how the dynamics of cavitation bubbles are affected by several factors,such as the locations of the bubbles,the ambient radius,and the number of bubbles.Herein the variations of bubble radius,energy,temperature,pressure,and the quantity of vapor molecules are analyzed.Our findings reveal that bubble-bubble interactions can restrict the expansion of bubbles,reduce the exchange of energy among vapor molecules,and diminish the maximum internal temperature and pressure when bursting.The ambient radius of bubbles can influence the intensities of their oscillations,with clusters comprised of smaller bubbles creating optimal conditions for generating high-temperature and high-pressure regions.Moreover,an increase in the number of bubbles can further inhibit cavitation activities.The frequency,pressure and waveform of the driving wave can also exert a significant influence on cavitation activities,with rectangular waves enhancing and triangular waves weakening the cavitation of bubbles in the cluster.These results provide a theoretical basis for understanding the dynamics of cavitation bubbles in a bubble cluster,and the factors that affect their behaviors.展开更多
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentra...In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles.展开更多
Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities o...Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.展开更多
Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+...Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing stra...The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing strata.Based on the box-counting method and the pore fractal features in porous media,a fractal model of bubble microstructure parameters in gassy soil under different gas con-tents and vertical load conditions is established by using an industrial X-ray CT scanning system.The results show that the fractal di-mension of bubbles in the sample is correlated with the volume fraction of bubbles,and it is also restricted by the vertical load.The three-dimensional fractal dimension of the sample is about 1 larger than the average two-dimensional fractal dimension of all the slices from the same sample.The uniform porous media fractal model is used to test the equivalent diameter,and the results show that the variation of the measured pore diameter ratio is jointly restricted by the volume fraction and the vertical load.In addition,the measured self-similarity interval of the bubble area distribution is tested by the porous media fractal capillary bundle model,and the fitting curve of measured pore area ratio in a small loading range is obtained in this paper.展开更多
Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is ...Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.展开更多
The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or mic...The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.展开更多
Infrared dust bubbles play an important role in the study of star formation and the evolution of the interstellar medium.In this work,we study the infrared dust bubble N75 and the infrared dark cloud G38.93 mainly usi...Infrared dust bubbles play an important role in the study of star formation and the evolution of the interstellar medium.In this work,we study the infrared dust bubble N75 and the infrared dark cloud G38.93 mainly using the tracers C^(18)O,HCO^(+),HNC and N_(2)H^(+)observed by the 30 m IRAM telescope.We also study the targets using data from large-scale surveys:GLIMPSE,MIPSGAL,GRS,NRAO VLA Sky Survey and Bolocam Galactic Plane Survey.We found that the C^(18)O emission is morphologically similar to the Spitzer IRAC 8.0μm emission.The1.1 mm cold dust emission of G38.93 shows an elongated structure from southwest to northeast.The ionized gas from G38.93 is surrounded by polycyclic aromatic hydrocarbon emission,which may be excited by radiation from G38.93.We found that the identified young stellar objects tend to cluster around G38.93 and are mostly in class II with several class I cases distributed around N75,but no class II examples.We also found evidence of expanding feedback,which could have triggered star formation.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
文摘The present paper is inspired by the article “Ho’oleilana: An Individual Baryon Acoustic Oscillation?” published by R. B. Tully, C. Howlett, and D. Pomarède on Sep. 2023 [1]. They claim: Evidence is presented here for the discovery of a remarkably strong individual contribution to the baryon acoustic oscillation (BAO) signal at z = 0.068, an entity that is given the name Ho’oleilana. K. Dawson, co-spokesperson for Dark Energy Spectroscopic Instrument is more inclined to believe that this latest finding is something of a coincidence, a chance alignment that simply looks like a sphere with a radius around what you’d expect for a BAO [2]. In this paper, we provide a short summary of experimental observations of Boötes Void and Superclusters;discuss the main features of the developed Hypersphere World-Universe Model;introduce notions “Cosmic Voids” and “Cosmic Bubbles”;elaborate a mathematical framework for different types of Cosmic Bubbles (Hubble Spherical Bubble for the World, Disk Bubbles for Galaxies;Spherical Bubbles for Extrasolar Systems, Dark Matter (DM) Spherical Bubbles for Galaxies and Superclusters);make a conclusion that the Boötes is a DM Cosmic Bubble and suggest experiments, which confirm our conclusion.
文摘In theoretical investigations of^(36)Ar published by Ge Ren et al.(Phys Lett B 138990,2024),^(36)Ar bubble nuclei,char acterized by central density depletions,were studied using the extended quantum molecular dynamics model.Three novel density distributions—microbubble,bubble,and cluster resonances—were identified,each showing distinc spectral signatures in the gamma-ray decay spectrum o the isoscalar monopole resonance.
基金supported by the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘External vibrations are known to be one of the promising ways to control the behavior of multiphase systems. Thecomputational modeling of the behavior of a gas bubble in a viscous liquid in a horizontal cylinder of squarecross-section, which undergoes linearly polarized translational oscillations in weightless conditions, has been carried out. Under vibrations, the bubble moves towards the wall of the vessel with acceleration determined by theamplitudes and frequency of vibrations. Near the wall, at a distance of the order of the thickness of the viscousStokes boundary layer, the effects of viscosity become more important and, as a result, the bubble is repelled fromthe wall. After some oscillations, equilibrium conditions are attained where the attractive force balances the repulsive force;accordingly, the average position of the bubble ceases to change. The numerical modelling shows thatthe average behaviors of a deformable bubble near a wall under normal and tangential vibration are similar.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.82130069).
文摘Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and EIS read-out circuits hinder the downsizing of cytometry devices.To address this,we developed a thermal-bubble-driven impedance flow cytometric application-specific integrated circuit(ASIC).The thermal-bubble micropump avoids external piping and equipment,enabling high-throughput designs.With a total of 36 cell counting channels,each measuring 884×220μm^(2),the chip significantly enhances the throughput of flow cytometers.Each cell counting channel incorporates a differential trans-impedance amplifier(TIA)to amplify weak biosensing signals.By eliminating the parasitic parameters created at the complementary metal-oxidesemiconductor transistor(CMOS)-micro-electromechanical systems(MEMS)interface,the counting accuracy can be increased.The on-chip TIA can adjust feedback resistance from 5 to 60 kΩto accommodate solutions with different impedances.The chip effectively classifies particles of varying sizes,demonstrated by the average peak voltages of 0.0529 and 0.4510 mV for 7 and 14μm polystyrene beads,respectively.Moreover,the counting accuracies of the chip for polystyrene beads and MSTO-211H cells are both greater than 97.6%.The chip exhibits potential for impedance flow cytometer at low cost,high-throughput,and miniaturization for the application of point-of-care diagnostics.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074354)。
文摘We present a dynamic model of cavitation bubbles in a cluster,in which the effects of evaporation,condensation,and bubble-bubble interactions are taken into consideration.Under different ultrasound conditions,we examine how the dynamics of cavitation bubbles are affected by several factors,such as the locations of the bubbles,the ambient radius,and the number of bubbles.Herein the variations of bubble radius,energy,temperature,pressure,and the quantity of vapor molecules are analyzed.Our findings reveal that bubble-bubble interactions can restrict the expansion of bubbles,reduce the exchange of energy among vapor molecules,and diminish the maximum internal temperature and pressure when bursting.The ambient radius of bubbles can influence the intensities of their oscillations,with clusters comprised of smaller bubbles creating optimal conditions for generating high-temperature and high-pressure regions.Moreover,an increase in the number of bubbles can further inhibit cavitation activities.The frequency,pressure and waveform of the driving wave can also exert a significant influence on cavitation activities,with rectangular waves enhancing and triangular waves weakening the cavitation of bubbles in the cluster.These results provide a theoretical basis for understanding the dynamics of cavitation bubbles in a bubble cluster,and the factors that affect their behaviors.
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974232 and 12374441)the Fund from the Yulin Science and Technology Bureau,China(Grant No.CXY-2022-178).
文摘In a multi-bubble system, the bubble behavior is modulated by the primary acoustic field and the secondary acoustic field. To explore the translational motion of bubbles in cavitation liquids containing high-concentration cavitation nuclei,evolutions of bubbles are recorded by a high-speed camera, and translational trajectories of several representative bubbles are traced. It is found that translational motion of bubbles is always accompanied by the fragmentation and coalescence of bubbles, and for bubbles smaller than 10 μm, the possibility of bubble coalescence is enhanced when the spacing of bubbles is less than 30 μm. The measured signals and their spectra show the presence of strong negative pressure, broadband noise,and various harmonics, which implies that multiple interactions of bubbles appear in the region of high-intensity cavitation.Due to the strong coupling effect, the interaction between bubbles is random. A simplified triple-bubble model is developed to explore the interaction patterns of bubbles affected by the surrounding bubbles. Patterns of bubble interaction, such as attraction, repulsion, stable spacing, and rebound of bubbles, can be predicted by the theoretical analysis, and the obtained results are in good agreement with experimental observations. Mass exchange between the liquid and bubbles as well as absorption in the cavitation nuclei also plays an important role in multi-bubble cavitation, which may account for the weakening of the radial oscillations of bubbles.
基金Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region (Grant No.NJZY23100)。
文摘Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles.
基金National Natural Science Foundation of China (Grant Nos. 52277151 and 51907088)。
文摘Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
基金supported by the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(No.sk lhse-2022-D-03)the National Natural Science Foundation of China(Nos.U2006213,42277139)the Taishan Scholars Program(No.tsqn202306297).
文摘The microscopic characterization of isolated bubbles in gassy soil plays an important role in the macroscopic physical properties of sediments and is a key factor in the study of geological hazards in gas-bearing strata.Based on the box-counting method and the pore fractal features in porous media,a fractal model of bubble microstructure parameters in gassy soil under different gas con-tents and vertical load conditions is established by using an industrial X-ray CT scanning system.The results show that the fractal di-mension of bubbles in the sample is correlated with the volume fraction of bubbles,and it is also restricted by the vertical load.The three-dimensional fractal dimension of the sample is about 1 larger than the average two-dimensional fractal dimension of all the slices from the same sample.The uniform porous media fractal model is used to test the equivalent diameter,and the results show that the variation of the measured pore diameter ratio is jointly restricted by the volume fraction and the vertical load.In addition,the measured self-similarity interval of the bubble area distribution is tested by the porous media fractal capillary bundle model,and the fitting curve of measured pore area ratio in a small loading range is obtained in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2167217,12205286,and 11905025)the National MCF Energy Research and Development Program of China (Grant No.2018YFE0308105)。
文摘Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.
基金financial support from National Natural Science Foundation of China(22108263)Shanxi Province Basic Research Program Project(20210302124060)the 18th Graduate Student Technology Project of North University of China(20221824).
文摘The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water.
基金supported by the National Key R&D Program of China(No.2022YFA1602901)the local Science and Technology innovation projects of the central government(No.XZ202301YD0037C)the National Natural Science Foundation of China(No.11933011)。
文摘Infrared dust bubbles play an important role in the study of star formation and the evolution of the interstellar medium.In this work,we study the infrared dust bubble N75 and the infrared dark cloud G38.93 mainly using the tracers C^(18)O,HCO^(+),HNC and N_(2)H^(+)observed by the 30 m IRAM telescope.We also study the targets using data from large-scale surveys:GLIMPSE,MIPSGAL,GRS,NRAO VLA Sky Survey and Bolocam Galactic Plane Survey.We found that the C^(18)O emission is morphologically similar to the Spitzer IRAC 8.0μm emission.The1.1 mm cold dust emission of G38.93 shows an elongated structure from southwest to northeast.The ionized gas from G38.93 is surrounded by polycyclic aromatic hydrocarbon emission,which may be excited by radiation from G38.93.We found that the identified young stellar objects tend to cluster around G38.93 and are mostly in class II with several class I cases distributed around N75,but no class II examples.We also found evidence of expanding feedback,which could have triggered star formation.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.