The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles a...The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues.Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.展开更多
Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging techniq...Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging technique,and the ambient radius is obtained by fitting the numerical calculation based on the Rayleigh–Plesset bubble dynamics model to the experimental data. The results show that, under the same driving condition, the ambient radius of the cavitation bubble decreases correspondingly with the increase of SDS concentration within the critical micelle concentration, while the compression ratio of the radius increases, which indicates that the addition of SDS decreases the internal molecular number of the cavitation bubble and increases the power capability of the cavitation bubble. In addition, bubble oscillation increases the concentration of the surfactant molecules on the bubble wall, so that the effect of SDS on a single cavitation bubble is reduced when the SDS concentration is greater than 0.8 m M.展开更多
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the re...In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the reduction of energy consumption of the electrolytic cell. In the existing industrial electrolytic cells, the circulating pump drives the electrolyte flowing to discharge the gaseous products. Up to now, several much more advanced strategies have been explored to deal with the negative effects of bubbles. In this review, we summarized various strategies for bubble detachment, including electrode design, external field imposing and system upgrading. We also elaborated the principle, functional features, practicability, advantages and limitations of each method. Finally, challenges and perspectives are also provided for the further development of advanced bubbles detachment strategies for efficient hydrogen evolution.展开更多
The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow o...The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11904042)the Natural Science Foundation of Chongqing,China (Grant No.cstc2019jcyj-msxmX0534)the Science and Technology Research Program of Chongqing Municipal Education Commission,China (Grant No.KJQN202000617)。
文摘The cavitation dynamics and mechanical stress in viscoelastic tissues, as the primary mechanisms of some ultrasound therapies, are extremely complex due to the interactions of cavitation bubble with adjacent bubbles and surrounding tissues.Therefore, the cavitation dynamics and resultant mechanical stress of two-interacting bubbles in the viscoelastic tissues are numerically investigated, especially focusing on the effects of the adjacent bubble. The results demonstrate that the mechanical stress is highly dependent on the bubble dynamics. The compressive stress and tensile stress are generated at the stage of bubble expansion and collapse stage, respectively. Furthermore, within the initial parameters examined in this paper, the effects of the adjacent bubble will distinctly suppress the radial expansion of the small bubble and consequently lead its associated stresses to decrease. Owing to the superimposition of two stress fields, the mechanical stresses surrounding the small bubble in the direction of the neighboring bubble are smaller than those in other directions. For two interacting cavitation bubbles, the suppression effects of the nearby bubble on both the cavitation dynamics and the stresses surrounding the small bubble increase as the ultrasound amplitude and the initial radius of the large bubble increase, whereas they decrease with the inter-bubble distance increasing. Moreover, increasing the tissue viscoelasticity will reduce the suppression effects of the nearby bubble, except in instances where the compressive stress and tensile stress first increase and then decrease with the tissue elasticity and viscosity increasing respectively. This study can provide a further understanding of the mechanisms of cavitation-associated mechanical damage to the adjacent tissues or cells.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005 and 11574150
文摘Dynamics of a single cavitation bubble in sodium dodecyl sulfate(SDS) aqueous solutions is investigated experimentally and theoretically. The bubble pulsation is measured by a phase-locked integrated imaging technique,and the ambient radius is obtained by fitting the numerical calculation based on the Rayleigh–Plesset bubble dynamics model to the experimental data. The results show that, under the same driving condition, the ambient radius of the cavitation bubble decreases correspondingly with the increase of SDS concentration within the critical micelle concentration, while the compression ratio of the radius increases, which indicates that the addition of SDS decreases the internal molecular number of the cavitation bubble and increases the power capability of the cavitation bubble. In addition, bubble oscillation increases the concentration of the surfactant molecules on the bubble wall, so that the effect of SDS on a single cavitation bubble is reduced when the SDS concentration is greater than 0.8 m M.
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.
基金the National Natural Science Foundation of China(No.51902101)the Youth Natural Science Foundation of Hunan Province(No.2021JJ40044)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications(Nos.NY219144 and NY221046)the National College Student Innovation and Entrepreneurship Training Program(No.202210293171 K).
文摘In the process of electrocatalytic water splitting, the management of gaseous products is an important task. Timely detachment of gaseous products from the electrode surface and the electrolyte is beneficial to the reduction of energy consumption of the electrolytic cell. In the existing industrial electrolytic cells, the circulating pump drives the electrolyte flowing to discharge the gaseous products. Up to now, several much more advanced strategies have been explored to deal with the negative effects of bubbles. In this review, we summarized various strategies for bubble detachment, including electrode design, external field imposing and system upgrading. We also elaborated the principle, functional features, practicability, advantages and limitations of each method. Finally, challenges and perspectives are also provided for the further development of advanced bubbles detachment strategies for efficient hydrogen evolution.
基金sponsored by the National Natural Science Foundation of China (40730318 and 40574019)the key project of social welfare of the Ministry of Science and Technology,PRC(2005DIA3J117) +1 种基金seismic industry research project (200808002)basic scientific research of Institute of Geophysics CEA(DQJB07A01) ,China
文摘The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.