期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A Comprehensive Review of the Influence of Heat Exchange Tubes on Hydrodynamic,Heat,and Mass Transfer in Bubble and Slurry Bubble
1
作者 Dalia S.Makki Hasan Sh.Majdi +5 位作者 Amer A.Abdulrahman Abbas J.Sultan Zahraa W.Hasan Laith S.Sabri Bashar J.Kadhim Muthanna HAl-Dahhan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2613-2637,共25页
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ... Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified. 展开更多
关键词 Fischer-tropsch synthesis bubble/slurry bubble column reactors heat exchanging tubes HYDRODYNAMIC heat transfer mass transfer
下载PDF
Review on the effect of heat exchanger tubes on flow behavior and heat/mass transfer of the bubble/slurry reactors
2
作者 Le Li Yansheng Zhao +3 位作者 Wenhao Lian Chun Han Qian Zhang Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期44-61,共18页
Bubble/Slurry bubble column reactors(BCR/SBCR)are intensively used as multiphase reactors for a wide range of application in the chemical,biochemical and petrochemical industries.Most of these applications involve com... Bubble/Slurry bubble column reactors(BCR/SBCR)are intensively used as multiphase reactors for a wide range of application in the chemical,biochemical and petrochemical industries.Most of these applications involve complicate gas–liquid/gas–liquid–solid flow behavior and exothermic process,thus it is necessary to equip the BCR/SBCR with heat exchanger tubes to remove the heat and govern the performance of the reactor.Amounts of experimental and numerical studies have been carried out to describe the phenomena taking place in BCR/SBCRs with heat exchanger tubes.Unfortunately,little effort has been put on reviewing the experiments and simulations for examining the effect of internals on the performance and hydrodynamics of BCR/SBCR.The objective of this work is to give a state-of-the-art review of the literature on the effects of heat exchanger tubes with different types and configurations on flow behavior and heat/mass transfer,then provide adequate information and scientific basis for the design and the development of heat exchanger tubes in BCR/SBCR,ultimately provide reasonable suggestions for better comprehend the performance of different heat exchanger tubes on hydrodynamics. 展开更多
关键词 INTERNALS HYDRODYNAMICS Heat exchanger tube bubble/slurry bubble column reactors
下载PDF
Hydrodynamic Behavior in a Tapered Bubble Column
3
作者 ZHANGKai ZHAOYu-long ZHANGBi-jiang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期478-482,共5页
The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Ove... The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity. 展开更多
关键词 Tapered slurry bubble column Flow regime transition Overall gas holdup Axial holdups profile Distributor pressure drop
下载PDF
Mathematical modeling of a slurry reactor for DME direct synthesis from syngas 被引量:2
4
作者 Sadegh Papari Mohammad Kazemeini Moslem Fattahi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期148-157,共10页
In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether(DME) from syngas.This large-scale reactor is modeled us... In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether(DME) from syngas.This large-scale reactor is modeled using mass and energy balances,catalyst sedimentation andsingle-bubble as well as two-bubbles class flow hydrodynamics.A comparison between the two hydrodynamic models through pilot plantexperimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data thanhomogeneous single-bubble gas flow model.Also,by investigating the heterogeneous gas flow and axial dispersion model for small bubblesas well as the large bubbles and slurry(i.e.including paraffins and the catalyst) phase,the temperature profile along the reactor is obtained.Acomparison between isothermal and non-isothermal reactors reveals no obvious performance difference between them.The optimum values ofreactor diameter and height were obtained at 7 m and 50 m,respectively.The effects of operating variables on the axial catalyst distribution,DME productivity and CO conversion are also investigated in this research. 展开更多
关键词 modeling large-scale slurry bubble column optimization dimethyl ether synthesis single-bubble class two-bubbles class isotherm andnon-isotherm
下载PDF
Study on direct alcohol/ether fuel synthesis process in bubble column slurry reactor
5
作者 Zhen CHEN Haitao ZHANG +1 位作者 Weiyong YING Dingye FANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2010年第4期461-471,共11页
The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME... The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME)synthesis from syngas over a novel Cu-Zn-Al-Zr slurry catalyst was established according to the total of 25 experimental data,and a steady-state one-dimensional mathematical model was further developed in bubble column slurry reactor(BCSR),which was assumed that the bubble phase was plug flow,and the liquid phase was fully mixed flow.The numerical simulations of reactor design of 100000 t/a dimethyl ether pilot plant indicate that higher pressure and lower temperature were favorable to the increase of CO conversion,selectivity of dimethyl ether,product yield and height of slurry bed.The optimal operating conditions for DME synthesis process were obtained:reaction temperature at 240℃,reactor pressure at 5 MPa and reactor diameter of 2.5 m. 展开更多
关键词 SYNGAS alcohol/ether fuel slurry catalyst bubble column slurry reactor global kinetics mathematical model
原文传递
Particle effects on the hydrodynamics in slurry bubble column reactors:A review from multiscale mechanisms Author links open overlay panel
6
作者 Min An Jingqi Gao +1 位作者 Tiankuo Wang Xiangnan Li 《Particuology》 SCIE EI CAS 2024年第8期176-189,共14页
Particles can appear as catalyst,reactant or product in various gas-liquid-solid three-phase production processes.Slurry bubble column reactors(SBCRs),as a kind of three-phase reactors,are preferred for phase contacti... Particles can appear as catalyst,reactant or product in various gas-liquid-solid three-phase production processes.Slurry bubble column reactors(SBCRs),as a kind of three-phase reactors,are preferred for phase contacting and mixing.However,literature studies concerning the effects of particles on the hydrodynamics of SBCRs are manifold and inconsistent in conclusions.Essentially,the multiscale interactions between particles,turbulent eddies and bubbles determine the reactor performance.This review focuses on revealing the particle effects in SBCRs from the perspective of multiscale mechanisms.Macroscopic hydrodynamic changes due to particle effects in literature are summarized.Dimensionless parameters,including the Stokes number,the solid-to-liquid density ratio,the ratio of particle and liquid characteristic lengths,the contact angle and the particle volume fraction are adopted to evaluate the characteristics of gas-liquid-solid flows.The relationships between particle influencing mechanisms and these parameters are analyzed and determined.Inconsistent experimental results are explained by different ranges of these dimensionless parameters.Moreover,particle effects at the mesoscale and microscale,such as the influence on the bubble dynamics and the pivoting effect on the turbulence energy spectrum,are elaborated.Finally,progress in modeling the SBCRs with consideration of particles effects using the Euler method are introduced.This review aims to improve the overall understanding of the complex hydrodynamics in the SBCRs. 展开更多
关键词 slurry bubble column reactors Particle effects Turbulence characteristics bubble dynamics CFD
原文传递
Study on flow characteristics and phase holdup in a slurry bubble column coupled with mild agitation Author links open overlay panel
7
作者 Qingyuan An Jiantao Li +4 位作者 Lei Zhang Nailiang Wang Pengfei Zhang Zhenghong Luo Chunxi Lu 《Particuology》 SCIE EI CAS 2024年第8期226-234,共9页
A pilot-scale experimental setup was constructed to investigate the effect of mild agitation on the bubble characteristics and phase holdup in a slurry bubble column.Mild agitation positively impacts the axial uniform... A pilot-scale experimental setup was constructed to investigate the effect of mild agitation on the bubble characteristics and phase holdup in a slurry bubble column.Mild agitation positively impacts the axial uniform distribution of solid holdup,though it shows insignificant influence on the radial distribution.In homogenous regime,mild agitation promotes the coalescence of bubbles,and the effect becomes stronger with increasing agitator speed.The mild agitation contributes to a decrease in bubble size in heterogeneous flow regime.Mild agitation presents a significant effect on the gas holdup by adjusting the bubble size and bubble motion trajectory.The modification was introduced to predict the gas holdup considering the effects of mild agitation,a necessary consideration for applications requiring mild agitation.This adapted model predicts gas holdup with a maximum error of 12.9%. 展开更多
关键词 slurry bubble column Mild agitation Phase holdup bubble characteristics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部