This paper presents a novel driving circuit for the high-side switch of high voltage buck regulators.A 40 V P-channel lateral double-diffused metal–oxide–semiconductor device whose drain–source and drain–gate can ...This paper presents a novel driving circuit for the high-side switch of high voltage buck regulators.A 40 V P-channel lateral double-diffused metal–oxide–semiconductor device whose drain–source and drain–gate can resist high voltage, but whose source–gate must be less than 5 V, is used as the high-side switch. The proposed driving circuit provides a stable and accurate 5 V driving voltage for protecting the high-side switch from breakdown and achieving low on-resistance and simple loop stability design. Furthermore, the driving circuit with excellent driving capability decreases the switching loss and dead time is also developed to reduce the shoot-through current loss. Therefore, power efficiency is greatly improved. An asynchronous buck regulator with the proposed technique has been successfully fabricated by a 0.35 μm CDMOS technology. From the results, compared with the accuracy of16.38% of the driving voltage in conventional design, a high accuracy of 1.38% is achieved in this work. Moreover,power efficiency is up to 95% at 12 V input and 5 V output.展开更多
A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved signific...A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved significantly by adding on-chip capacitors and one-shot circuit. Also the transient response is faster through the introduction of current offset. The circuit is concise, simple to implement and suits for SoC applications with single power supply. A dualoutput current-mode DC-DC buck converter with proposed structure has been fabricated with a 0.5 μm CMOS process for validation. In the 2.5–5.5 V input range, the two channels work steadily in the load current range of 0–600 mA. And the measured maximum efficiency is up to 96%.展开更多
基金supported by the National Natural Science Foundation of China(No.61106026)the Fundamental Research Funds for the Central Universities of China(No.K50511020028)
文摘This paper presents a novel driving circuit for the high-side switch of high voltage buck regulators.A 40 V P-channel lateral double-diffused metal–oxide–semiconductor device whose drain–source and drain–gate can resist high voltage, but whose source–gate must be less than 5 V, is used as the high-side switch. The proposed driving circuit provides a stable and accurate 5 V driving voltage for protecting the high-side switch from breakdown and achieving low on-resistance and simple loop stability design. Furthermore, the driving circuit with excellent driving capability decreases the switching loss and dead time is also developed to reduce the shoot-through current loss. Therefore, power efficiency is greatly improved. An asynchronous buck regulator with the proposed technique has been successfully fabricated by a 0.35 μm CDMOS technology. From the results, compared with the accuracy of16.38% of the driving voltage in conventional design, a high accuracy of 1.38% is achieved in this work. Moreover,power efficiency is up to 95% at 12 V input and 5 V output.
基金supported by the National Key Pre-Research Program of China (Nos. D1120060967, Y30306270105)
文摘A novel anti-jamming integrated CMOS current-sensing circuit for current-mode buck regulators is presented. Based on the widely-used traditional current-sensing structure, anti-jamming performance is improved significantly by adding on-chip capacitors and one-shot circuit. Also the transient response is faster through the introduction of current offset. The circuit is concise, simple to implement and suits for SoC applications with single power supply. A dualoutput current-mode DC-DC buck converter with proposed structure has been fabricated with a 0.5 μm CMOS process for validation. In the 2.5–5.5 V input range, the two channels work steadily in the load current range of 0–600 mA. And the measured maximum efficiency is up to 96%.