Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
对Buck变换器主电路在CCM工作模式下进行动态小信号分析,详细推导其状态方程得出小信号模型.先后设计3种闭环控制补偿网络,即PD,PID和双极点-双零点补偿网络,推导出补偿网络后系统的开环传递函数,由Matlab仿真出补偿网络补偿前后的开环...对Buck变换器主电路在CCM工作模式下进行动态小信号分析,详细推导其状态方程得出小信号模型.先后设计3种闭环控制补偿网络,即PD,PID和双极点-双零点补偿网络,推导出补偿网络后系统的开环传递函数,由Matlab仿真出补偿网络补偿前后的开环传递函数的伯德图.结果表明,双极点-双零点补偿网络设计后,相角裕度为51.1°,稳态误差为0,在高频段幅频特性的下降频率为-40 d B/dec,获得了更好的稳态和动态性能,能更好地抑制高频干扰,这对研究其他开关电源有着非常好的借鉴作用.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
文摘对Buck变换器主电路在CCM工作模式下进行动态小信号分析,详细推导其状态方程得出小信号模型.先后设计3种闭环控制补偿网络,即PD,PID和双极点-双零点补偿网络,推导出补偿网络后系统的开环传递函数,由Matlab仿真出补偿网络补偿前后的开环传递函数的伯德图.结果表明,双极点-双零点补偿网络设计后,相角裕度为51.1°,稳态误差为0,在高频段幅频特性的下降频率为-40 d B/dec,获得了更好的稳态和动态性能,能更好地抑制高频干扰,这对研究其他开关电源有着非常好的借鉴作用.