The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as...The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.展开更多
The energy absorption characteristics of the lotus-type porous coppers at the strain rate of 10-3 s-1 to N2400 s 1 were systematically investigated. Depending on the relative density and loading rate, the energy absor...The energy absorption characteristics of the lotus-type porous coppers at the strain rate of 10-3 s-1 to N2400 s 1 were systematically investigated. Depending on the relative density and loading rate, the energy absorption capability of the tested samples varied from -20 to -85 MJ m-1, while the energy absorption efficiency fluctuated around N0.6. An energy absorption efficiency curve based approach was proposed for unambiguous identification of the plateau regime, which gave an extension of -0.50 strain range for the presently investigated porous coppers. With detailed observations of cell wall morphologies at various deformation stages, it was suggested that buckling of cell wails was the dominant mechanism mediat- ing the energy absorption in lotus-type porous coppers.展开更多
基金support from the National Natural Science Foundation of China (Grant 11572140)the Fundamental Research Funds for the Central Universities (Grants JUSRP11529, JUSRP115A10, JG2015059)+5 种基金the research and practice project of teaching reform of graduate education in Jiangsu (Grant JGLX16_048)the Undergraduate Innovation Training Program of Jiangnan University of China (Grant 2015151Y)the Undergraduate Innovation and Entrepreneurship Training Program of China (Grant 201610295057)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA) (Grant MCMS-0416G01)the "Project of Jiangsu provincial Six Talent Peaks" in Jiangsu Province"Thousand Youth Talents Plan"
文摘The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.
基金financial support from the National Natural Science Foundation of China (Grant No. 50904004)
文摘The energy absorption characteristics of the lotus-type porous coppers at the strain rate of 10-3 s-1 to N2400 s 1 were systematically investigated. Depending on the relative density and loading rate, the energy absorption capability of the tested samples varied from -20 to -85 MJ m-1, while the energy absorption efficiency fluctuated around N0.6. An energy absorption efficiency curve based approach was proposed for unambiguous identification of the plateau regime, which gave an extension of -0.50 strain range for the presently investigated porous coppers. With detailed observations of cell wall morphologies at various deformation stages, it was suggested that buckling of cell wails was the dominant mechanism mediat- ing the energy absorption in lotus-type porous coppers.