Fiber-reinforced resin-based plastics are widely used in structural composites for aerospace and automotive applications,and they often face extreme load conditions in actual working environments.It is challenging to ...Fiber-reinforced resin-based plastics are widely used in structural composites for aerospace and automotive applications,and they often face extreme load conditions in actual working environments.It is challenging to monitor the damage of the structure during the vibration process.This study was aimed at using buckypaper(BP)sensors to monitor the structural health status of composite structures under ambient vibrations.First,the feasibility of flexible printed circuit instead of wire is verified by the tensile experiment.Then the vibration monitoring experiment of the composite cantilever beam is carried out by using BP sensors systematically.The sweep frequency experiment determines the excitation frequency of the cantilever beam.Low-period vibration fatigue cycle and high-period vibration fatigue cycle experiments are designed to verify the vibration monitoring method using BP sensors.Besides,the signal response of BP sensors in the vibration experiment is analyzed,and the relationship betweenΔR/R0 and vibration acceleration is obtained.Finally,through the change law ofΔR/R0 of the sensor,the cumulative damage caused by vibration fatigue is visualized.It is demonstrated that the monitoring method based on BP sensors can be applied to study the damage behavior of composite structure under the vibration environment.展开更多
基金This work was supported by the National Natural Science Foundation of China[11902204]Natural Science Foundation of Liaoning Province[2020-MS-236,2019010256-JH3/301]+1 种基金Shenyang Youth Technological Innovation Talent Project[RC200030,RC190004]Aeronautical Science Foundation[201903054001].
文摘Fiber-reinforced resin-based plastics are widely used in structural composites for aerospace and automotive applications,and they often face extreme load conditions in actual working environments.It is challenging to monitor the damage of the structure during the vibration process.This study was aimed at using buckypaper(BP)sensors to monitor the structural health status of composite structures under ambient vibrations.First,the feasibility of flexible printed circuit instead of wire is verified by the tensile experiment.Then the vibration monitoring experiment of the composite cantilever beam is carried out by using BP sensors systematically.The sweep frequency experiment determines the excitation frequency of the cantilever beam.Low-period vibration fatigue cycle and high-period vibration fatigue cycle experiments are designed to verify the vibration monitoring method using BP sensors.Besides,the signal response of BP sensors in the vibration experiment is analyzed,and the relationship betweenΔR/R0 and vibration acceleration is obtained.Finally,through the change law ofΔR/R0 of the sensor,the cumulative damage caused by vibration fatigue is visualized.It is demonstrated that the monitoring method based on BP sensors can be applied to study the damage behavior of composite structure under the vibration environment.