Landslides are a frequent phenomenon on mountain Elgon, particularly in Bududa district on the SW side of this extinct shield volcano. Landslides have led to the destruction of property and loss of life we, therefore,...Landslides are a frequent phenomenon on mountain Elgon, particularly in Bududa district on the SW side of this extinct shield volcano. Landslides have led to the destruction of property and loss of life we, therefore, need to monitor them. Monitoring how landslides build-up makes it possible to timely evacuate people and build barriers to protect property against damage by landslides. Residents in Bududa have reported cracks developing in the ground and houses. These cracks continue to grow, suggesting a future catastrophic event. Such an event may resemble the 2010 landslide in Bududa, which killed approximately 450 people and destroyed much property. In order to mitigate the consequences of a new landslide as much as possible, we monitored ground motion in Bududa in eleven stations from June 2018 to June 2019. Six-hour session GPS observations were made, and deformation was determined over the observation period, June to September 2018, September to November 2018, November 2018 to February 2019 and February to June 2019. A congruency test was performed to determine how significant the deformation was. It appeared that the ground deformation differed largely at various monitored stations, ranging from 0.004 to 0.076 m, 0.001 to 0.067 m and 0 to 0.078 m in the East, North and vertical directions respectively. The values indicate that most slopes in the district are unstable, particularly in the wet seasons, which implies that future landslides pose a high risk for society.展开更多
Estimation of ground displacement in landslide susceptible regions is very critical to understanding how landslides develop. The knowledge of ground displacement rates and magnitudes helps plan for the safety of the p...Estimation of ground displacement in landslide susceptible regions is very critical to understanding how landslides develop. The knowledge of ground displacement rates and magnitudes helps plan for the safety of the people and infrastructure. The early detection of landslides in Bududa is still a challenge due to th</span><span style="font-family:Verdana;">e limited technology, hard to access, and a need for an affordable technique that can monitor a wide area continuously. In recent studies, the use of Persistent Scatterer Interferometry Synthetic Aperture Radar (PS-InSAR)</span><span style="font-family:Verdana;"> has </span><span style="font-family:Verdana;">provided vital information on landslide monitoring through the measure</span><span style="font-family:Verdana;">ment of ground displacement. In this study, Synthetic Aperture Radar (SAR) band C series of Sentinel 1-A and 1-B Satellite images were acquired between 2019 and 2020 along ascending and descending orbit paths. The Line of Sight Sight (LOS) displacement was determined for both satellite tracks, and then the LOS displacement was projected to the vertical direction. The PS-InSAR derived vertical displacement was then compared with GPS vertical displacement magnitudes over three GPS stations in the area. It was observed that vertical displacement velocity reached 20 cm/yr in Mountain Elgon. This displacement rate showed that there are points in the region that are highly unstable. The displacement velocity and magnitude in Bududa reached 6 cm/yr and 13 cm in two years. This rate and magnitude showed that Bududa is highly unstable compared with displacement velocities and magnitudes in landslide susceptible areas globally. The displacement was generally subsidence over the observation period. The vertical displacement estimated by PS-InSAR was comparable with GPS based on the estimated RMSE. The vertical displacement was highest at slopes between 32</span></span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and 60</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and lowest between 0</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and 9</span><span style="font-family:""><span style="color:#4F4F4F;font-family:Verdana;">°</span><span style="font-family:Verdana;"></span></span><span style="font-family:Verdana;">. The vertical ground displacement was highly correlated with </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">rainfall that was received. The soil texture in Bududa has high clay content, with clay layering hence low drainage rates, field capacity, saturation and bulk density. It was observed that ground displacement was highly influenced by slope, rainfall and soil texture. Displacement could be estimated in three dimensions using PS-InSAR in the future if sufficient SAR images in ascending and descending tracks are made available with significantly different geometries. This would add to the knowledge of displacement patterns in the east and north directions at a large spatial scale</span><span style="font-family:Verdana;">.展开更多
文摘Landslides are a frequent phenomenon on mountain Elgon, particularly in Bududa district on the SW side of this extinct shield volcano. Landslides have led to the destruction of property and loss of life we, therefore, need to monitor them. Monitoring how landslides build-up makes it possible to timely evacuate people and build barriers to protect property against damage by landslides. Residents in Bududa have reported cracks developing in the ground and houses. These cracks continue to grow, suggesting a future catastrophic event. Such an event may resemble the 2010 landslide in Bududa, which killed approximately 450 people and destroyed much property. In order to mitigate the consequences of a new landslide as much as possible, we monitored ground motion in Bududa in eleven stations from June 2018 to June 2019. Six-hour session GPS observations were made, and deformation was determined over the observation period, June to September 2018, September to November 2018, November 2018 to February 2019 and February to June 2019. A congruency test was performed to determine how significant the deformation was. It appeared that the ground deformation differed largely at various monitored stations, ranging from 0.004 to 0.076 m, 0.001 to 0.067 m and 0 to 0.078 m in the East, North and vertical directions respectively. The values indicate that most slopes in the district are unstable, particularly in the wet seasons, which implies that future landslides pose a high risk for society.
文摘Estimation of ground displacement in landslide susceptible regions is very critical to understanding how landslides develop. The knowledge of ground displacement rates and magnitudes helps plan for the safety of the people and infrastructure. The early detection of landslides in Bududa is still a challenge due to th</span><span style="font-family:Verdana;">e limited technology, hard to access, and a need for an affordable technique that can monitor a wide area continuously. In recent studies, the use of Persistent Scatterer Interferometry Synthetic Aperture Radar (PS-InSAR)</span><span style="font-family:Verdana;"> has </span><span style="font-family:Verdana;">provided vital information on landslide monitoring through the measure</span><span style="font-family:Verdana;">ment of ground displacement. In this study, Synthetic Aperture Radar (SAR) band C series of Sentinel 1-A and 1-B Satellite images were acquired between 2019 and 2020 along ascending and descending orbit paths. The Line of Sight Sight (LOS) displacement was determined for both satellite tracks, and then the LOS displacement was projected to the vertical direction. The PS-InSAR derived vertical displacement was then compared with GPS vertical displacement magnitudes over three GPS stations in the area. It was observed that vertical displacement velocity reached 20 cm/yr in Mountain Elgon. This displacement rate showed that there are points in the region that are highly unstable. The displacement velocity and magnitude in Bududa reached 6 cm/yr and 13 cm in two years. This rate and magnitude showed that Bududa is highly unstable compared with displacement velocities and magnitudes in landslide susceptible areas globally. The displacement was generally subsidence over the observation period. The vertical displacement estimated by PS-InSAR was comparable with GPS based on the estimated RMSE. The vertical displacement was highest at slopes between 32</span></span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and 60</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and lowest between 0</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:Verdana;">°</span></span><span style="font-family:Verdana;"> and 9</span><span style="font-family:""><span style="color:#4F4F4F;font-family:Verdana;">°</span><span style="font-family:Verdana;"></span></span><span style="font-family:Verdana;">. The vertical ground displacement was highly correlated with </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">rainfall that was received. The soil texture in Bududa has high clay content, with clay layering hence low drainage rates, field capacity, saturation and bulk density. It was observed that ground displacement was highly influenced by slope, rainfall and soil texture. Displacement could be estimated in three dimensions using PS-InSAR in the future if sufficient SAR images in ascending and descending tracks are made available with significantly different geometries. This would add to the knowledge of displacement patterns in the east and north directions at a large spatial scale</span><span style="font-family:Verdana;">.