In this work, Bioactive-functionalized interpenetrating network (IPNs) hydrogel (BIOF-INPs) were prepared and investigated in vitro for the free radical detection/defense, therapeutic release as well as shear bond str...In this work, Bioactive-functionalized interpenetrating network (IPNs) hydrogel (BIOF-INPs) were prepared and investigated in vitro for the free radical detection/defense, therapeutic release as well as shear bond strength to dentine, ability to re-mineralize surface of the dentin after application of these bio-inspired materials using a biologically inspired mineralization process in vitro as well as investigating antimicrobial properties of the BIOF-INPs against S. aureous. The aim of this investigation was to evaluate the suitability and flexibility of the designer materials to act as an “in vitro” probe to gain insights into molecular origin of TMD and associated disorders.展开更多
文摘In this work, Bioactive-functionalized interpenetrating network (IPNs) hydrogel (BIOF-INPs) were prepared and investigated in vitro for the free radical detection/defense, therapeutic release as well as shear bond strength to dentine, ability to re-mineralize surface of the dentin after application of these bio-inspired materials using a biologically inspired mineralization process in vitro as well as investigating antimicrobial properties of the BIOF-INPs against S. aureous. The aim of this investigation was to evaluate the suitability and flexibility of the designer materials to act as an “in vitro” probe to gain insights into molecular origin of TMD and associated disorders.