EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in m...EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in more than 10 buildings situated in different areas of Hong Kong. Variations were identified in the exhalation rates at different levels in a building, for different covering materials and for the presence of cracks in walls. The radon exhalation rate from the most common concrete walls and covering materials was found to be approximately 13 mBq·m<sup>-2</sup>·s<sup>-1</sup>. This may be the cause of a relatively high indoor radon concentration in Hong Kong.展开更多
To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating...To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.展开更多
The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn...The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn University of Technology. Working out on the basis of investigations has been new empirical formulas for determining design flow rates for schools, kindergartens, office buildings and shopping centres. DHW consumption profiles of typical buildings are presented. Comparisons are given on the determination of DHW design flow rates by the standard EVS 835, the EN 806-3 and the recommended formulas. The latter makes it possible to considerably decrease the design flow rates which in turn enables to deminish the load of the equipment, to improve the quality of control and to decrease the diameters of the pipes of the district heating network and the losses of heat in them.展开更多
A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar...A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.展开更多
A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that ...A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that the electricity requirement of the building is provided by the building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced from the surplus power of PV. A design study of using the proposed system in five cities in Mie prefecture, which are in center part of Japan, has been performed. It has been observed that the monthly power production from BIPV is higher in spring and summer, while it is lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that the 12 households are more suitable for full cover of the electricity demand by the combined system of PV and FC. The relationship between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by exponential curve. The coefficient of the exponential curve can predict the suitable city for the BIPV system with FC system utilizing electrolytic H2 generated by using excess energy from the PV system.展开更多
文摘EPA-standardized activated charcoal canisters were used to collect radon exhaled from building surfaces and analyzed using γ-spectroscopy to obtain the radon exhalation rates. More than 120 samples were analyzed in more than 10 buildings situated in different areas of Hong Kong. Variations were identified in the exhalation rates at different levels in a building, for different covering materials and for the presence of cracks in walls. The radon exhalation rate from the most common concrete walls and covering materials was found to be approximately 13 mBq·m<sup>-2</sup>·s<sup>-1</sup>. This may be the cause of a relatively high indoor radon concentration in Hong Kong.
文摘To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.
文摘The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn University of Technology. Working out on the basis of investigations has been new empirical formulas for determining design flow rates for schools, kindergartens, office buildings and shopping centres. DHW consumption profiles of typical buildings are presented. Comparisons are given on the determination of DHW design flow rates by the standard EVS 835, the EN 806-3 and the recommended formulas. The latter makes it possible to considerably decrease the design flow rates which in turn enables to deminish the load of the equipment, to improve the quality of control and to decrease the diameters of the pipes of the district heating network and the losses of heat in them.
文摘A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.
文摘A building integrated energy system (photovoltaic (PV) and fuel cell (FC)) is proposed for assessment of the energy self-sufficiency rate in five cities of Mie prefecture in Japan. In this work, it is considered that the electricity requirement of the building is provided by the building integrated photovoltaic (BIPV) system and the gap between the energy demand and BIPV supply is fulfilled by the FC. The FC is powered by the electrolytic H2 produced from the surplus power of PV. A design study of using the proposed system in five cities in Mie prefecture, which are in center part of Japan, has been performed. It has been observed that the monthly power production from BIPV is higher in spring and summer, while it is lower in autumn and winter at all considered locations. The self-sufficiency rate of the FC system is higher with decreasing households’ number and it has been observed that the 12 households are more suitable for full cover of the electricity demand by the combined system of PV and FC. The relationship between the households’ number and self-sufficiency rate of the FC system per solar PV installation area can be expressed by exponential curve. The coefficient of the exponential curve can predict the suitable city for the BIPV system with FC system utilizing electrolytic H2 generated by using excess energy from the PV system.