Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive venti...Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.展开更多
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typi...To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.展开更多
With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were s...With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.展开更多
In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to ...In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.展开更多
In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this s...In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.展开更多
China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings i...China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.展开更多
With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ven...With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.展开更多
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ...Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.展开更多
The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn...The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn University of Technology. Working out on the basis of investigations has been new empirical formulas for determining design flow rates for schools, kindergartens, office buildings and shopping centres. DHW consumption profiles of typical buildings are presented. Comparisons are given on the determination of DHW design flow rates by the standard EVS 835, the EN 806-3 and the recommended formulas. The latter makes it possible to considerably decrease the design flow rates which in turn enables to deminish the load of the equipment, to improve the quality of control and to decrease the diameters of the pipes of the district heating network and the losses of heat in them.展开更多
Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart ...Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart building ideas and execution are of great interest and top priority due to the building’s occupants’ misused and high-power consumption. This paper addresses the design and execution of an energy management system that includes a solar power system for generating power for the building’s needs and a PIR-based automation system for efficient power use. This project was carried out at the Military Technological College (MTC) in Muscat, in the system engineering department’s offices. This project seeks to generate power for the building’s energy needs using solar photovoltaic panels and reduce energy consumption within the office using a PIR-based automation system. The results demonstrate that after the breakeven point (the time it takes to recoup the initial investment), it can provide power to the building for another 17 years. The calculations and practical results presented in this study approve that the system is extremely helpful.展开更多
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design...With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.展开更多
San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practic...San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practices within the residential sector on future energy consumption, the energy utilization of single-family attached homes (SFAH) in Bexar County, Texas is studied. The available dataset includes 3932 SFAH records representing about 33% of the total number of SFAHs within the county. The study is based on pairing and analyzing data at the individual building level from a variety of sources including the buildings’ physical characteristics, access to fuels, and monthly energy consumption. The results indicate that the area of conditioned space, presence of swimming pools, number of stories, presence of fireplaces, fuel-type, and number of shared walls are a significant factor on the energy consumption of single-family attached homes. In terms of energy consumption, all-electric two-story homes sharing two walls are the most energy efficient among SFAHs. This study can aid comprehensive master planning efforts for developing sustainable communities by highlighting key features of SFAHs and making the case for higher density housing as a viable and more energy efficient alternative to single-family detached homes (SFDH).展开更多
School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turk...School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turkey in 2012-2013,some difficulties occurred in the spatial structure of the schools.After the new system,increasing number of students and decreasing student requirements have been tried to be solved with temporary solutions.At the same time that millions of students studying in primary schools all over Turkey have the same architectural feature as one type of architectural school project,regardless of the geographical and social situation began to be implemented in all parts of the city.Therefore,the increase in consumption varies depending on the geographical reasons where the type projects are implemented.Selected regions of the four thermal zones in Turkey for this research are provided below:1^st Thermal district in Antalya;2^nd Thermal district in Bursa;3^rd Thermal district in Elaz??;4^th Thermal district in Kars.The calculation of the energy consumption created by the above cities by means of BEP-TR program and comparing classes.展开更多
Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calc...Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calculation method [1], especially for cold regions such as Kosice (Slovakia). The energy requirement for heating a case study industrial building was evaluated using measurements and calculations.During the winter period, energy consumption was measured in the selected industrial building according to a validation standard [2]. The building is comprised of two halls. The measurements were analyzed according to the criteria used for validating residential and public buildings, with several regression dependencies taken into account in the resulting evaluation of heating energy consumption. The mathematical dependencies of measured values in real conditions are shown in this paper. In addition, the building’s heating energy demand was calculated according to the Austrian standard [3], ?NORM EN ISO 13790, the simplified calculation method for non-residential buildings. It was investigated whether the measured values could be replicated using this calculation. It was found that the precise definition of the internal heat gains is very important.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilit...In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions.展开更多
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金Project(RGPIN-2019-05824)supported by the Start-up Fund of Universitéde Sherbrooke and Discovery Grants of Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Ventilation is an effective solution for improving indoor air quality and reducing airborne transmission.Buildings need sufficient ventilation to maintain a low infection risk but also need to avoid an excessive ventilation rate,which may lead to high energy consumption.The Wells-Riley(WR)model is widely used to predict infection risk and control the ventilation rate.However,few studies compared the non-steady-state(NSS)and steady-state(SS)WR models that are used for ventilation control.To fill in this research gap,this study investigates the effects of the mechanical ventilation control strategies based on NSS/SS WR models on the required ventilation rates to prevent airborne transmission and related energy consumption.The modified NSS/SS WR models were proposed by considering many parameters that were ignored before,such as the initial quantum concentration.Based on the NSS/SS WR models,two new ventilation control strategies were proposed.A real building in Canada is used as the case study.The results indicate that under a high initial quantum concentration(e.g.,0.3 q/m^(3))and no protective measures,SS WR control underestimates the required ventilation rate.The ventilation energy consumption of NSS control is up to 2.5 times as high as that of the SS control.
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.
文摘To overcome the shortcomings of the energyconsumption prediction models in the application during thedesign stage, a quick prediction model for energy consumptionis proposed based on the decoupling method. Taking typicalresidential and office buildings in hot summer and cold winterzones as research objects, the influence factors on buildingenergy consumption are classified into intrinsic factors andoperational factors on the basis of the heat transfer principle.Then, using the intrinsic factors as the fundamental variablesand operational factors as the modified variables, the quickprediction model for the buildings in typical cold and hot zonesis proposed based on the decoupling method and the accuracyof the proposed model is verified. The results show thatcompared to the simulation results of EnergyPlus, the relativeerror of the prediction model is less than 1.5% ; comparedwith the real operating data of the building, the relative erroris 13.14% in 2011 and 8.56% in 2012 due to the fact that thecoincidence factor becomes larger than the design value about16% in 2011 and 13% in 2012. The finding reveals that theproposed model has the advantages of rapid calculationcompared with EnergyPlus and Design Builder when predictingbuilding energy consumption in building designs. The energyconsumption prediction model is of great practical value inoptimal operation and building designs.
基金Project(2011BAJ01B05) supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan Period of China
文摘With rapid economy growth,building energy consumption in China has been gradually increased.The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province,a hot and humid area,were studied through collection of verified data in site visits and field tests.The result revealed that,electricity accounted for 99.79% of the total energy consumption,natural gas 0.17%,and diesel 0.04%.The air conditioning dominated the energy use with a share of 43.18%,equipment in the particular areas 26.90%,equipment in the office rooms 11.95%,lighting system 8.67%,general service system 7.57%,and miscellaneous items 1.73%.Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW-h/m2 and lower limit of 55.26 kW-h/m2.According to ASHRAE standard(comfortable standard) and GB/T 18883-2002(acceptable standard),the indoor environmental quality of 51 sampled office buildings was classified into three ranks:good,normal and bad.With benchmark of building energy consumption combined with indoor environmental quality,it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality,and the buildings classified into normal level accounted for the maximum ratio.
文摘In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.
基金Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414024)Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414012).
文摘In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.
文摘China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.
基金in part by the Doctoral Scientific Research Foundationof Beijing University of Civil Engineering and Architecture under Grant ZF15054in part by theFundamental Research Funds for Beijing University of Civil Engineering and Architecture underGrant X18066in part by the 2021 BUCEA Post Graduate Innovation Project under GrantPG2021011.
文摘With the exponential development of Chinese population,the massive energy consumption of buildings has recently become an interest subject.Although much research has been conducted on residential buildings,heating ventilation and air conditioning(HVAC),little research has been conducted on the relationship between student’s behavior,campus buildings,and their subsystems.Using classical seasonal decomposition,hierarchical clustering,and apriori algorithm,this paper aims to provide an empirical model for consumption data in campus library.Smart meter data from a library in Beijing,China,is adopted in this paper.Building electricity consumption patterns are investigated on an hourly/daily/monthly basis.According to the monthly analysis,electricity consumption peaks each year around June and December due to teaching programs,social exams,and outdoor temperatures.Hourly data analysis revealed a relatively stable consumption pattern.It shows three different types of daily load profiles.Daily data analysis demonstrated a high relationship between HVAC consumption and building total consumption,with a lift value of 5.9.Furthermore,links between temperature and subsystems were also discovered.Through a case study of library,this study provides a unique insight into campus electricity use.The results could help to develop operational strategies for campus facilities.
文摘Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.
文摘The paper gives a thorough survey of the studies of different authors in the field of domestic hot water (DHW) consumption and consumption profiles. It presents an overview of the research done into DHW by the Tallinn University of Technology. Working out on the basis of investigations has been new empirical formulas for determining design flow rates for schools, kindergartens, office buildings and shopping centres. DHW consumption profiles of typical buildings are presented. Comparisons are given on the determination of DHW design flow rates by the standard EVS 835, the EN 806-3 and the recommended formulas. The latter makes it possible to considerably decrease the design flow rates which in turn enables to deminish the load of the equipment, to improve the quality of control and to decrease the diameters of the pipes of the district heating network and the losses of heat in them.
文摘Buildings are becoming smarter as a result of a variety of advanced technologies that enable energy management, optimal space utilization, and smart surveillance for safety, among other things. Energy-efficient smart building ideas and execution are of great interest and top priority due to the building’s occupants’ misused and high-power consumption. This paper addresses the design and execution of an energy management system that includes a solar power system for generating power for the building’s needs and a PIR-based automation system for efficient power use. This project was carried out at the Military Technological College (MTC) in Muscat, in the system engineering department’s offices. This project seeks to generate power for the building’s energy needs using solar photovoltaic panels and reduce energy consumption within the office using a PIR-based automation system. The results demonstrate that after the breakeven point (the time it takes to recoup the initial investment), it can provide power to the building for another 17 years. The calculations and practical results presented in this study approve that the system is extremely helpful.
文摘With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.
文摘San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practices within the residential sector on future energy consumption, the energy utilization of single-family attached homes (SFAH) in Bexar County, Texas is studied. The available dataset includes 3932 SFAH records representing about 33% of the total number of SFAHs within the county. The study is based on pairing and analyzing data at the individual building level from a variety of sources including the buildings’ physical characteristics, access to fuels, and monthly energy consumption. The results indicate that the area of conditioned space, presence of swimming pools, number of stories, presence of fireplaces, fuel-type, and number of shared walls are a significant factor on the energy consumption of single-family attached homes. In terms of energy consumption, all-electric two-story homes sharing two walls are the most energy efficient among SFAHs. This study can aid comprehensive master planning efforts for developing sustainable communities by highlighting key features of SFAHs and making the case for higher density housing as a viable and more energy efficient alternative to single-family detached homes (SFDH).
文摘School is a special place where students come together to become productive individuals of society,acquire basic skills and acquire citizenship knowledge.With the introduction of the new education system(4+4+4)in Turkey in 2012-2013,some difficulties occurred in the spatial structure of the schools.After the new system,increasing number of students and decreasing student requirements have been tried to be solved with temporary solutions.At the same time that millions of students studying in primary schools all over Turkey have the same architectural feature as one type of architectural school project,regardless of the geographical and social situation began to be implemented in all parts of the city.Therefore,the increase in consumption varies depending on the geographical reasons where the type projects are implemented.Selected regions of the four thermal zones in Turkey for this research are provided below:1^st Thermal district in Antalya;2^nd Thermal district in Bursa;3^rd Thermal district in Elaz??;4^th Thermal district in Kars.The calculation of the energy consumption created by the above cities by means of BEP-TR program and comparing classes.
基金the project ITMS“26220220050”—Architectural,Structural,technological and economical aspects of energy efficiency building designfinancially supported by the EU structural resources within operative program of research and development OPVaV-2008/2.2/01-SORO.
文摘Because of the high energy demand required to heat a production hall, the aim of this project is to find out whether it is possible to verify the heating consuming process for heating with the standard simplified calculation method [1], especially for cold regions such as Kosice (Slovakia). The energy requirement for heating a case study industrial building was evaluated using measurements and calculations.During the winter period, energy consumption was measured in the selected industrial building according to a validation standard [2]. The building is comprised of two halls. The measurements were analyzed according to the criteria used for validating residential and public buildings, with several regression dependencies taken into account in the resulting evaluation of heating energy consumption. The mathematical dependencies of measured values in real conditions are shown in this paper. In addition, the building’s heating energy demand was calculated according to the Austrian standard [3], ?NORM EN ISO 13790, the simplified calculation method for non-residential buildings. It was investigated whether the measured values could be replicated using this calculation. It was found that the precise definition of the internal heat gains is very important.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
文摘In this study,information on energy usage in the United States(U.S.)aerospace manufacturing sector has been analyzed and then represented as energy intensities(kWh/m2)to establish benchmark data and to compare facilities of varying sizes.First,public sources were identified and the data from these previously published sources were aggregated to determine the energy usage of aerospace manufacturing facilities within the U.S.From this dataset,a sample of 28 buildings were selected and the energy intensity for each building was estimated from the data.Next,as a part of this study the energy data for three additional aerospace manufacturing facilities in the U.S.were collected firsthand.That data was analyzed and the energy intensity(kWh/m2)for each facility was calculated and then compared with the energy intensities of the 28 buildings from the sample.Three different indicators of energy consumption in aerospace manufacturing facilities were used as comparators to assist facility managers with determining potential energy savings and help in the decision-making process.On average,aerospace manufacturing facilities in the United States spent 4 cents for each dollar of sale on energy.The energy intensity(kWh/m2)and the power intensity(W/m2)for each facility were calculated based on the actual facility energy bills.The power intensity for these facilities ranges from 34 to 134 W/m2.The energy intensity ranged from 232 to 949 kWh/m2.We found that the power intensity could be used to estimate energy consumption when the annual operating hours of the facility are considered.and to estimate the energy-related carbon dioxide emissions.