The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or des...A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserv...Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.展开更多
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘A typical building project has a long life in the maintenance stage. Also, the cost at this stage is enormously huge compared to planning, design and construction phases. In the earlier stage, which is planning or design phase, however, many project participants put little emphasis on the maintenance information. As a result, important maintenance data is missing and erroneously feedback to the 3D/BIM model. This research provides a generic process model for maintenance information management for building facilities. The authors have identified that there exist most-frequently used information areas: checking information, material information, equipment information, supplier information, and maintenance history information. Each information area should be embedded in the BIM model in order to effectively feedback to the operation and maintenance stage in the project. Thus, the study has proposed a novel data format structure which can effectively link the 3D/BIM object with the maintenance data. The demonstration project shows how the data format structure is used. The contribution of this study is to provide guidance to a project practitioner by step-by-step approach in dealing with the significant maintenance information in the earlier stage of the construction project.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.