In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a ...In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.展开更多
This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stabilit...This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.展开更多
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe...Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.展开更多
Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, whi...Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.展开更多
为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层...为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。展开更多
为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线...为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。展开更多
Influence of the elasticity of the base on vibration isolation performances of single layer, double layer and floating raft vibration isolation systems is investigated systematically. Characteristics of vibration coup...Influence of the elasticity of the base on vibration isolation performances of single layer, double layer and floating raft vibration isolation systems is investigated systematically. Characteristics of vibration coupling between different vibration isolation systems and different elastic bases are analyzed. Moreover the characteristics of vibration acceleration level difference and force transmissibility of different vibration isolation systems are discussed and their simpli- fled expressions are given. In addition the required control forces of active vibration isolation under different installations of actuators for different vibration isolation systems are compared. The results show that for all vibration isolation systems, the addition of the stiffness and damping of the base can enhance their vibration acceleration level difference and force transmissibility. Moreover for floating raft vibration isolation system, the addition of the stiffness and damping of the raft can enhance its vibration isolation performance and reduce the control force required bv active vibration isolation.展开更多
The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were sy...The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.展开更多
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371,62003029)Beijing Natural Science Foundation(JQ20026)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘In this study,an innovative solution is developed for vibration suppression of the high-rise building.The infinite dimensional system model has been presented for describing high-rise building structures which have a large inertial load with the help of the Hamilton’s principle.On the basis of this system model and with the use of the Lyapunov’s direct method,a boundary controller is proposed and the closed-loop system is uniformly bounded in the time domain.Finally,by using the Smart Structure laboratory platform which is produced by Quancer,we conduct a set of experiments and find that the designed method is resultful.
基金National Natural Science Foundation(NNSF)of China under Grant No.51478132Guangzhou City College Scientific Research Project under Grant No.120163017
文摘This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A2C1A01011131)the Energy Cloud R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(2019M3F2A1073164).
文摘Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity.
基金the Science Council in Taiwan for the financial support(Project No.NSC 95- 2221-E-035-1120)
文摘Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.
文摘为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。
文摘为解决基础隔震结构中隔震层位移需求过大的问题,提出了一种基础隔震结构(Base Isolated Structure,BIS)+串并联调谐质量阻尼器惯容器(Tuned Tandem Mass Damper-Inerter, TTMDI)的混合隔震体系。采用Bouc-Wen滞回模型模拟隔震层的非线性力-变形行为,基于随机等效线性化和模式搜索优化算法并考虑地震动模型,在频域内建立了BIS+TTMDI体系的优化设计框架。分别从鲁棒性、有效性、刚度和阻尼系数、冲程及对地震频率敏感性方面对BIS+TTMDI体系的性能进行评估,并与BIS+调谐质量阻尼器(Tuned Mass Damper, TMD)、串并联调谐质量阻尼器(TunedTandemMassDamper,TTMD)和调谐质量阻尼器惯容器(TunedMass Damper-Inerter, TMDI)进行比较。通过对近场地震动下某七层混合基础隔震结构(包括BIS+TTMDI和BIS+TMDI体系)的动力弹塑性分析,评价了其减/隔震性能。结果表明:BIS+TTMDI体系具有最好的减/隔震性能和强鲁棒性;而且在BIS+TTMDI体系中TTMDI的总阻尼需求不到BIS+TMDI体系中TMDI的一半,因而更为经济实用。
文摘Influence of the elasticity of the base on vibration isolation performances of single layer, double layer and floating raft vibration isolation systems is investigated systematically. Characteristics of vibration coupling between different vibration isolation systems and different elastic bases are analyzed. Moreover the characteristics of vibration acceleration level difference and force transmissibility of different vibration isolation systems are discussed and their simpli- fled expressions are given. In addition the required control forces of active vibration isolation under different installations of actuators for different vibration isolation systems are compared. The results show that for all vibration isolation systems, the addition of the stiffness and damping of the base can enhance their vibration acceleration level difference and force transmissibility. Moreover for floating raft vibration isolation system, the addition of the stiffness and damping of the raft can enhance its vibration isolation performance and reduce the control force required bv active vibration isolation.
基金National Key Research and Development Program of China under Grant No.2017YFC0703600 and No.2017YFC0703604。
文摘The optimal design and effectiveness of three control systems,tuned viscous mass damper(TVMD),tuned inerter damper(TID)and tuned mass damper(TMD),on mitigating the seismic responses of base isolated structures,were systematically studied.First,the seismic responses of the base isolated structure with each control system under white noise excitation were obtained.Then,the structural parameter optimizations of the TVMD,TID and TMD were conducted by using three different objectives.The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses,including the base shear of the BIS,the absolute acceleration of structural SDOF,and the relative displacement between the base isolation floor and the foundation.Finally,considering the superstructure as a structural MDOF,a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations.The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases,and the effectiveness of TID was always better than TMD with the same mass ratio.The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD.Furthermore,the TVMD,when compared with TMD and TID,had better activation sensitivity and a smaller stroke.