期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Controllable thermal rectification design for buildings based on phase change composites
1
作者 Hengbin Ding Xiaoshi Li +2 位作者 Tianhang Li Xiaoyong Zhao He Tian 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期40-45,共6页
Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device... Phase-change material(PCM)is widely used in thermal management due to their unique thermal behavior.However,related research in thermal rectifier is mainly focused on exploring the principles at the fundamental device level,which results in a gap to real applications.Here,we propose a controllable thermal rectification design towards building applications through the direct adhesion of composite thermal rectification material(TRM)based on PCM and reduced graphene oxide(rGO)aerogel to ordinary concrete walls(CWs).The design is evaluated in detail by combining experiments and finite element analysis.It is found that,TRM can regulate the temperature difference on both sides of the TRM/CWs system by thermal rectification.The difference in two directions reaches to 13.8 K at the heat flow of 80 W/m^(2).In addition,the larger the change of thermal conductivity before and after phase change of TRM is,the more effective it is for regulating temperature difference in two directions.The stated technology has a wide range of applications for the thermal energy control in buildings with specific temperature requirements. 展开更多
关键词 phase change composites controllable thermal rectification building applications
下载PDF
An Updated Review on Low-Temperature Nanocomposites with a Special Focus on Thermal Management in Buildings
2
作者 John Paul K.Kadirgama +3 位作者 M.Samykano R.Saidur A.K.Pandey R.V.Mohan 《Energy Engineering》 EI 2022年第4期1299-1325,共27页
Buildings contribute to 33%of total global energy consumption,which corresponds to 38%of greenhouse gas emissions.Enhancing building’s energy efficiency remains predominant in mitigating global warming.Advance-ments ... Buildings contribute to 33%of total global energy consumption,which corresponds to 38%of greenhouse gas emissions.Enhancing building’s energy efficiency remains predominant in mitigating global warming.Advance-ments in thermal energy storage(TES)techniques using phase change material(PCM)have gained much attention among researchers,primarily to minimize energy consumption and to promote the use of renewable energy sources.PCM technology stays as the most promising technology for developing high-performance and energy-efficient buildings.The major drawback of PCM is its poor thermal conductivity which limits its potential use which could be resolved by dispersing conductive nanofillers.The acquired database on synthesis routes,properties,and performance of nano-dispersed phase change materials(NDPCMs)with various techniques presented in the paper should deliver useful information in the production of NDPCMs with desirable characteristics mainly for building construction applications.An outline of contemporary developments and use of NDPCMs as TES medium is delivered.Finally,a brief discussion on challenges and the outlook was also made.In-depth research is needed to explore the fundamental mechanisms behind the enhanced thermal conductivity of NDPCM with nanofillers dispersion and also a thorough investigation on how these mechanisms drive improvement in building performance. 展开更多
关键词 Thermal conductivity latent heat building applications energy savings
下载PDF
A Practical Approach to Representation of Real-time Building Control Applications in Simulation
3
作者 Azzedine Yahiaoui 《International Journal of Automation and computing》 EI CSCD 2020年第3期464-478,共15页
Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a... Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission.This technology generally refers to building automation and control systems(BACS)architecture.Instead of costly and time-consuming experiments,this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network.This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology.The application and capability of this new dynamic simulation environment are demonstrated by an experimental design,in this paper. 展开更多
关键词 Distributed dynamic simulation networked control systems building performance applications smart buildings building automation and control systems(BACS)architecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部