The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of...The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of 100 g of bovine breast meat were cooked using three treatments: heating in a conventional electric oven at the temperature of 165°C for 16 min, heating in a microwave oven at 800 W for 95 sec, and heating in the same microwave oven at 650 W for 160 sec. Significant decreases in intensity of vibration bands of CH2 methylene group at 1921 and 1853 cm-1 and of the carbonyl band at 1742 cm-1 were observed after microwave heating with respect to heating in a conventional oven, showing that Maillard reaction occurs partially using microwave oven. Spectral analysis in the amide I region after microwave cooking at 800 W for 95 sec showed that an increase in intensity occurred in the region from 1665 to 1690 cm-1 which can be attributed to β-turns, characteristic of disorder processes in the protein. Further analysis after microwave cooking at 650 W for 160 sec evidenced major increase in intensity of β-turns content and the appearance of significant increases of β-sheet component at 1635 cm-1 and 1695 cm-1 that can be attributed to aggregated β-sheets structures.展开更多
The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity un...The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.展开更多
Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its wi...Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its widespread use in Japan. In this study, we improved the decocting method by using a microwave oven such as those found in most kitchens. To validate the feasibility and safety of this new method, we decocted kakkonto, which is the most widely used formula in clinical treatment in Japan, and keishikabushito, which contains toxic components using a microwave oven. Regarding the contents of 8 characteristic components in the kakkonto decoction and the contents of 6 toxic components in the keishikabushito decoction as indices, and with the extraction and detoxification effects equal to those of the conventional decocting method as targets, we optimized the decocting conditions with Response Surface Methods. With this new method, it took 35 min to obtain almost the same extraction effect for kakkonto as with the conventional decocting method, which takes 40 min;meanwhile, it took only 45 min to detoxify keishikabushito, which takes 60 min using the conventional decocting method. Decocting Kampo medicines with a microwave oven is feasible and as safe as the conventional decocting method. It is a convenient, safe, time-saving method, and may be applied widely in clinical practice. This innovation should allow more patients to benefit from decoction and the individualized treatment it offers.展开更多
Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic meas...Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic measurement of a domestic microwave oven cavity-magnetron operating at f<sub>o</sub> = 2.45 ± 0.05 GHz (λ<sub>o</sub> ~ 12.2 cm) that is modulated in the time-domain (0 to 2 minutes). The measurements reveal the cavity-magnetron cathode filament cold-start warm-up period and the pulse width modulation periods (time-on time-off and base-time period, where time-on minus base-time = duty cycle). The waveform information is used to reconstruct historical microwave “non-thermal” homogeneous microorganism inactivation experiments: where tap-water is used to mimic the microorganism suspension;and ice, crushed ice, and ice slurry mixture are used as the cooling media. The experiments are described using text, diagrams, and photographs. Four key experimental parameters are indentified that influence the suspension time-dependent temperature profile. First, where the selected process time > the time-base, the cavity-magnetron continuous wave rated power should be used for each second of microwave illumination. Second, external crushed ice and ice slurry baths induce different cooling profiles due to difference in their heat absorption rates. In addition external baths may shield the suspension resulting in a retarding of the time-dependent heating profile. Third, internal cooling systems dictate that the suspension is directly exposed to microwave illumination due to the absence of surrounding ice volume. Fourth, four separated water dummy-loads isolate and control thermal heat transfer (conduction) to and from the suspension, thereby diverting a portion of the microwave power away from the suspension. Energy phase-space projections were used to compare the “non-thermal” energy densities of 0.03 to 0.1 kJ·m<sup>-1</sup> at 800 W with reported thermal microwave-assisted microorganism inactivation energy densities of 0.5 to 5 kJ·m<sup>-1</sup> at 1050 ± 50 W. Estimations of the “non-thermal” microwave-assisted root mean square of the electric field strength are found to be in the range of 22 to 41.2 V·m<sup>-1</sup> for 800 W.展开更多
We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, esti...We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.展开更多
This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm tran...This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm transmission-line vector net-analyzer (typically 0 to 10 dBm @ 2 to 8.5 GHz) where the blood is placed within a test chamber that acts as a non-50-Ohm discontinuity. The second interaction employs 1 to 6.5 W @ 8 to 26 GHz for microwave feed-horn illumination to inactivate microorganisms at an applied power density of 10 to 100 mW<sup>-2</sup>. The third interaction is within multi-mode microwave ovens, where microorganism cell membrane disruption occurs at a few 100 s of W @ 2.45 GHz and microorganism inactivation between 300 to 1800 W @ 2.45 GHz. Within the first microwave interaction, blood relaxation processes are examined. Whereas in the latter two microwave interactions, the following disruption, and inactivation mechanisms are examined: chemical cellular lysis and, microwave resonant absorption causing cell wall rupture, and thermodynamic analysis in terms of process energy budget and suspension energy density. In addition, oven-specific parameters are discussed.展开更多
This paper describes the use of log-linear energy phase-space projections to analyze microwave-assisted inactivation of bacteria and viruses under different fomite conditions within multimode microwave ovens. The oven...This paper describes the use of log-linear energy phase-space projections to analyze microwave-assisted inactivation of bacteria and viruses under different fomite conditions within multimode microwave ovens. The ovens are operated at a cavity-magnetron frequency of 2.45 ± 01 GHz. Porous fomites (moist face towels, cotton swabs, kitchen sponges, and scrubbing pads, cigarette filters and N95-like respirators);along with non-porous hard surface syringe fomites are studied. The fomites are classed as dielectric;and absorb microwave energy to varying degrees depending on their complex dielectric permittivity. Microorganism resilience to microwave stress (defined as ≥4 log<sub>10</sub> reduction in inactivation) when mapped using iso-volume trend-lines in energy phase-space reveals the persistence imparted by the fomite, and can be mapped between different microwave ovens. Microorganism resilience to thermal microwave-assisted treatment increases from vegetative Gram-negative to vegetative Gram-positive and on to Gram-positive spores. Bacteriophage MS2 and influenza viruses have an intermediate resilience dependency. It is shown that linear-scaled fomite temperature against process time graphs can differentiate between non-thermal and thermal micro-wave-assisted treatment of microorganisms.展开更多
A household microwave oven can be modified not only to be able to regulate microwave power continuously (including the intensity of EM field in the cavity),but also to be able to fit three flasks into the cavity (each...A household microwave oven can be modified not only to be able to regulate microwave power continuously (including the intensity of EM field in the cavity),but also to be able to fit three flasks into the cavity (each flask can be connected to a reflux condenser outside the cavity).The microwave heating uniformity of the three flasks was tested using water (50g. and 30g.) and ethanol (40g.) respectively.The results showed that the heating uniformity of the three flasks was 89±5% (average±σ n-1 ,n=22) and the microwave leakage was below 1 mW/cm 2.The modified oven was used by 90 undergraduate students for chemical synthesis experiment (microwave synthesis of veratraldehyde). The reaction time was only 2~3min.and the average yield was 86±9% (n=90).The variation of the average yields of among student groups was only 2%.Through variance analysis,F1,showing the difference was not significant.This modified microwave oven is especially suitable for chemical synthesis experiment for undergraduate students and for microwave digestion in analysis labs.展开更多
文摘The effects of microwave energy and conventional convective heating on bovine meat were studied in the mid-infrared region by FTIR spectroscopy, to highlight the differences between the two cooking methods. Samples of 100 g of bovine breast meat were cooked using three treatments: heating in a conventional electric oven at the temperature of 165°C for 16 min, heating in a microwave oven at 800 W for 95 sec, and heating in the same microwave oven at 650 W for 160 sec. Significant decreases in intensity of vibration bands of CH2 methylene group at 1921 and 1853 cm-1 and of the carbonyl band at 1742 cm-1 were observed after microwave heating with respect to heating in a conventional oven, showing that Maillard reaction occurs partially using microwave oven. Spectral analysis in the amide I region after microwave cooking at 800 W for 95 sec showed that an increase in intensity occurred in the region from 1665 to 1690 cm-1 which can be attributed to β-turns, characteristic of disorder processes in the protein. Further analysis after microwave cooking at 650 W for 160 sec evidenced major increase in intensity of β-turns content and the appearance of significant increases of β-sheet component at 1635 cm-1 and 1695 cm-1 that can be attributed to aggregated β-sheets structures.
基金supported by the National Natural Science Foundation of China under Grant No.10775029Vacuum Electronics National Laboratory Foundation under Grant No. NKLC001-063Postdoctoral Foundation under Grant No.20070411149
文摘The simulation software, HFSS (high frequency structure simulator), is introduced in microwave oven design. In the cold test, a network analyzer is used to measure the reflection coefficient (S11) of the cavity under empty and loaded states over the frequency range from 2.448 GHz to 2.468 GHz. In the hot test, a piece of wet thermal paper and an infrared thermal imaging camera are used to measure the electric field distributions on the mica and turntable. In the cold test, the simulation agrees well with the experiment no matter in empty state or loaded state. In the hot test, the simulation agrees well with the experiment in general in empty state and approximately in loaded state. The little difference in both cold and hot test may be due to that the model in simulation is not absolutely identical with that in experiment or the inadequate precision of infrared thermal imaging camera.
文摘Decoction of Kampo medicines plays an important role in clinical practice, especially in individualized treatment, while the inconvenience and a long time requirement of the decocting process are impediments to its widespread use in Japan. In this study, we improved the decocting method by using a microwave oven such as those found in most kitchens. To validate the feasibility and safety of this new method, we decocted kakkonto, which is the most widely used formula in clinical treatment in Japan, and keishikabushito, which contains toxic components using a microwave oven. Regarding the contents of 8 characteristic components in the kakkonto decoction and the contents of 6 toxic components in the keishikabushito decoction as indices, and with the extraction and detoxification effects equal to those of the conventional decocting method as targets, we optimized the decocting conditions with Response Surface Methods. With this new method, it took 35 min to obtain almost the same extraction effect for kakkonto as with the conventional decocting method, which takes 40 min;meanwhile, it took only 45 min to detoxify keishikabushito, which takes 60 min using the conventional decocting method. Decocting Kampo medicines with a microwave oven is feasible and as safe as the conventional decocting method. It is a convenient, safe, time-saving method, and may be applied widely in clinical practice. This innovation should allow more patients to benefit from decoction and the individualized treatment it offers.
文摘Over the last few decades there has been active discussion concerning the mechanisms involved in “non-thermal” microwave-assisted inactivation of microorganisms. This work presents a novel non-invasive acoustic measurement of a domestic microwave oven cavity-magnetron operating at f<sub>o</sub> = 2.45 ± 0.05 GHz (λ<sub>o</sub> ~ 12.2 cm) that is modulated in the time-domain (0 to 2 minutes). The measurements reveal the cavity-magnetron cathode filament cold-start warm-up period and the pulse width modulation periods (time-on time-off and base-time period, where time-on minus base-time = duty cycle). The waveform information is used to reconstruct historical microwave “non-thermal” homogeneous microorganism inactivation experiments: where tap-water is used to mimic the microorganism suspension;and ice, crushed ice, and ice slurry mixture are used as the cooling media. The experiments are described using text, diagrams, and photographs. Four key experimental parameters are indentified that influence the suspension time-dependent temperature profile. First, where the selected process time > the time-base, the cavity-magnetron continuous wave rated power should be used for each second of microwave illumination. Second, external crushed ice and ice slurry baths induce different cooling profiles due to difference in their heat absorption rates. In addition external baths may shield the suspension resulting in a retarding of the time-dependent heating profile. Third, internal cooling systems dictate that the suspension is directly exposed to microwave illumination due to the absence of surrounding ice volume. Fourth, four separated water dummy-loads isolate and control thermal heat transfer (conduction) to and from the suspension, thereby diverting a portion of the microwave power away from the suspension. Energy phase-space projections were used to compare the “non-thermal” energy densities of 0.03 to 0.1 kJ·m<sup>-1</sup> at 800 W with reported thermal microwave-assisted microorganism inactivation energy densities of 0.5 to 5 kJ·m<sup>-1</sup> at 1050 ± 50 W. Estimations of the “non-thermal” microwave-assisted root mean square of the electric field strength are found to be in the range of 22 to 41.2 V·m<sup>-1</sup> for 800 W.
文摘We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.
文摘This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm transmission-line vector net-analyzer (typically 0 to 10 dBm @ 2 to 8.5 GHz) where the blood is placed within a test chamber that acts as a non-50-Ohm discontinuity. The second interaction employs 1 to 6.5 W @ 8 to 26 GHz for microwave feed-horn illumination to inactivate microorganisms at an applied power density of 10 to 100 mW<sup>-2</sup>. The third interaction is within multi-mode microwave ovens, where microorganism cell membrane disruption occurs at a few 100 s of W @ 2.45 GHz and microorganism inactivation between 300 to 1800 W @ 2.45 GHz. Within the first microwave interaction, blood relaxation processes are examined. Whereas in the latter two microwave interactions, the following disruption, and inactivation mechanisms are examined: chemical cellular lysis and, microwave resonant absorption causing cell wall rupture, and thermodynamic analysis in terms of process energy budget and suspension energy density. In addition, oven-specific parameters are discussed.
文摘This paper describes the use of log-linear energy phase-space projections to analyze microwave-assisted inactivation of bacteria and viruses under different fomite conditions within multimode microwave ovens. The ovens are operated at a cavity-magnetron frequency of 2.45 ± 01 GHz. Porous fomites (moist face towels, cotton swabs, kitchen sponges, and scrubbing pads, cigarette filters and N95-like respirators);along with non-porous hard surface syringe fomites are studied. The fomites are classed as dielectric;and absorb microwave energy to varying degrees depending on their complex dielectric permittivity. Microorganism resilience to microwave stress (defined as ≥4 log<sub>10</sub> reduction in inactivation) when mapped using iso-volume trend-lines in energy phase-space reveals the persistence imparted by the fomite, and can be mapped between different microwave ovens. Microorganism resilience to thermal microwave-assisted treatment increases from vegetative Gram-negative to vegetative Gram-positive and on to Gram-positive spores. Bacteriophage MS2 and influenza viruses have an intermediate resilience dependency. It is shown that linear-scaled fomite temperature against process time graphs can differentiate between non-thermal and thermal micro-wave-assisted treatment of microorganisms.
文摘A household microwave oven can be modified not only to be able to regulate microwave power continuously (including the intensity of EM field in the cavity),but also to be able to fit three flasks into the cavity (each flask can be connected to a reflux condenser outside the cavity).The microwave heating uniformity of the three flasks was tested using water (50g. and 30g.) and ethanol (40g.) respectively.The results showed that the heating uniformity of the three flasks was 89±5% (average±σ n-1 ,n=22) and the microwave leakage was below 1 mW/cm 2.The modified oven was used by 90 undergraduate students for chemical synthesis experiment (microwave synthesis of veratraldehyde). The reaction time was only 2~3min.and the average yield was 86±9% (n=90).The variation of the average yields of among student groups was only 2%.Through variance analysis,F1,showing the difference was not significant.This modified microwave oven is especially suitable for chemical synthesis experiment for undergraduate students and for microwave digestion in analysis labs.