In order to obtain a glassy matrix during quenching, Be is often selected as a constituent of the compositions of Ti/Zr-based bulk metallic glass composites(BMGCs). The in situ formed β phase in Be-bearing BMGCs wa...In order to obtain a glassy matrix during quenching, Be is often selected as a constituent of the compositions of Ti/Zr-based bulk metallic glass composites(BMGCs). The in situ formed β phase in Be-bearing BMGCs was reported to be Be-free. However, a thorough investigation of the distribution of Be in BMGCs is still missing to date. In this work, the distribution of Be in a Ti_(47.5)Zr_(33)Cu_(5.8)Co_3Be_(12.5)(at.%) BMGC was studied by the secondary ion mass spectrometry(SIMS) and the electron energy loss spectroscopy(EELS).It is found that Be almost totally dissolves in the glassy matrix, but a very weak intensity of Be in β phase is still detectable by SIMS, and the content of Be in β-Ti is estimated to be about 0.3 at.%. Based on the recently established two-phase quasi-equilibrium of BMGCs, the distinct solubility of Be in the glassy matrix and in β-Ti has been explained.展开更多
In-situ dendritic reinforced Dy-Fe-Al amorphous matrix composites with a diameter of 3 mm were designed and fabricated by conventional Cu-mold casting method. XRD and SEM analyses were conducted to investigate the mic...In-situ dendritic reinforced Dy-Fe-Al amorphous matrix composites with a diameter of 3 mm were designed and fabricated by conventional Cu-mold casting method. XRD and SEM analyses were conducted to investigate the microstructure, the mechanical properties and the deformation and fracture behaviors of the composites. The forming mechanism and the deformation and fracture mechanism of the composites were discussed. The results indicate that the microstructures of composites consist of metallic glass matrix and α-Dy dendritic phase. The composites exhibit good mechanical properties with compressive fracture strength of 1 063 MPa, which is attributed to the effective bearing-load ability of the α-Dy dendrites and the glassy matrix and the restriction to the expanding of shear bands and cracks of the α-Dy dendrites. The nature of in-situ crystalline phases embedded in the amorphous matrix for in-situ crystallite reinforced Dy-Fe-Al amorphous matrix composites has a more important influence on the mechanical properties, the deformation and fracture behavior of the composites.展开更多
基金support from the National Natural Science Foundation of China (Nos. 51434008, U1435204, and 51531005)the China’s Manned Space Station Project (Mission No.: TGJZ800-2-RW024)the Shuangchuang Project of Jiangsu Province, China
文摘In order to obtain a glassy matrix during quenching, Be is often selected as a constituent of the compositions of Ti/Zr-based bulk metallic glass composites(BMGCs). The in situ formed β phase in Be-bearing BMGCs was reported to be Be-free. However, a thorough investigation of the distribution of Be in BMGCs is still missing to date. In this work, the distribution of Be in a Ti_(47.5)Zr_(33)Cu_(5.8)Co_3Be_(12.5)(at.%) BMGC was studied by the secondary ion mass spectrometry(SIMS) and the electron energy loss spectroscopy(EELS).It is found that Be almost totally dissolves in the glassy matrix, but a very weak intensity of Be in β phase is still detectable by SIMS, and the content of Be in β-Ti is estimated to be about 0.3 at.%. Based on the recently established two-phase quasi-equilibrium of BMGCs, the distinct solubility of Be in the glassy matrix and in β-Ti has been explained.
基金Project(20032137) supported by the Natural Science Foundation of Liaoning Province, China
文摘In-situ dendritic reinforced Dy-Fe-Al amorphous matrix composites with a diameter of 3 mm were designed and fabricated by conventional Cu-mold casting method. XRD and SEM analyses were conducted to investigate the microstructure, the mechanical properties and the deformation and fracture behaviors of the composites. The forming mechanism and the deformation and fracture mechanism of the composites were discussed. The results indicate that the microstructures of composites consist of metallic glass matrix and α-Dy dendritic phase. The composites exhibit good mechanical properties with compressive fracture strength of 1 063 MPa, which is attributed to the effective bearing-load ability of the α-Dy dendrites and the glassy matrix and the restriction to the expanding of shear bands and cracks of the α-Dy dendrites. The nature of in-situ crystalline phases embedded in the amorphous matrix for in-situ crystallite reinforced Dy-Fe-Al amorphous matrix composites has a more important influence on the mechanical properties, the deformation and fracture behavior of the composites.