期刊文献+
共找到4,747篇文章
< 1 2 238 >
每页显示 20 50 100
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:1
1
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
下载PDF
Stability Analysis of Landfills Contained by Retaining Walls Using Continuous Stress Method
2
作者 Yufang Zhang Yingfa Lu +2 位作者 Yao Zhong Jian Li Dongze Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期357-381,共25页
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ... An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall. 展开更多
关键词 Stress distribution strain distribution LANDFILL retaining wall numerical analysis
下载PDF
Limit state analysis of rigid retaining structures against seismically induced passive failure in heterogeneous soils
3
作者 Jianfeng Zhou Changbing Qin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1095-1105,共11页
Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge... Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios. 展开更多
关键词 retaining wall Passive earth pressure EARTHQUAKES Finite-element limit-analysis methods
下载PDF
Protective effect of retaining wall on rock avalanche:A case study of Nayong rock avalanche in China
4
作者 WANG Zhongfu SHI Fengge +3 位作者 HE Siming ZHANG Xusheng WANG Jingying LIU Enlong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1215-1230,共16页
Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia... Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche. 展开更多
关键词 Rock avalanche Laboratory model test retaining wall PFC^(3D) FLAC^(3D) Impact force
下载PDF
Reliability analysis of retaining walls with multiple failure modes 被引量:2
5
作者 张道兵 孙志彬 朱川曲 《Journal of Central South University》 SCIE EI CAS 2013年第10期2879-2886,共8页
In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of ant... In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of anti-slipping and anti-overturning based on the upper-bound theory of limit analysis were established, and two kinds of failure modes were regarded as a series of systems with multiple correlated failure modes. Then, statistical characteristics of parameters of the retaining wall structure were inferred by maximal entropy principle. At last, the structural reliabilities of single failure mode and multiple failure modes were calculated by Monte Carlo method in MATLAB and the results were compared and analyzed on the sensitivity. It indicates that this method, with a high precision, is not only easy to program and quick in calculation, but also without the limit of nonlinear functions and non-normal random variables. And the results calculated by this method which applies both the limit analysis theory, maximal entropy principle and Monte Carlo method into analyzing the reliability of the retaining wall structures is more scientific, accurate and reliable, in comparison with those calculated by traditional method. 展开更多
关键词 retaining wall MAXIMAL entropy PRINCIPLE LIMIT analysis MONTE Carlo method multiple failure MODES reliability
下载PDF
Influence factors on the seismic behavior and deformation modes of gravity retaining walls 被引量:2
6
作者 ZHU Hong-wei YAO Ling-kan LI Jing 《Journal of Mountain Science》 SCIE CSCD 2019年第1期168-178,共11页
This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak sei... This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak seismic earth pressures along the height of a wall was a single peak value curve. The seismic earth pressures on a gravel soil retaining wall were larger than the pressures on the weathered granite and quartz retaining walls. Also, the peak seismic earth pressure increased with increases in the peak ground acceleration and the wall height. The measured seismic active earth pressures on a rock foundation retaining wall were larger than the calculated values, and the action position of resultant seismic pressure was higher than 0.33 H. In the soil foundation retaining wall, the measured seismic earth pressures were much smaller than the calculated values, while the action position was slightly higher than 0.33 H. The soil foundation retaining wall suffered base sliding and overturning under earthquake conditions, while overturning was the main failure mode for the rock foundation retaining walls. 展开更多
关键词 GRAVITY retaining wall EARTHQUAKE action SEISMIC behavior Deformation mode SHAKING TABLE test
下载PDF
Dynamic earth pressure on rigid retaining walls induced by a neighboring machine foundation,by the meshless local Petrov-Galerkin method 被引量:1
7
作者 Mehdi Veiskarami Arash Bahar Erfan Zandi Lak 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期647-661,共15页
Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galer... Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galerkin (MLPG) method is used to analyze the problem for a variety of retaining wall and machine foundation geometries. The soil medium is assumed to be homogeneous and visco-elastic. The machine foundation is idealized as a harmonic sinusoidal dynamic force often encountered in practice. A number of analyses have been made to reveal the effect of the loading frequency, the location and size of the foundation and the soil shear wave velocity on the distribution and magnitude of the dynamic earth pressure. Results indicate that there is a critical frequency and a critical location for which the passive pressure takes the maxima in the entire duration of the dynamic load. 展开更多
关键词 MLPG retaining wall dynamic loading visco-elastic soil machine foundation
下载PDF
Development of a monitoring and warning system based on optical fiber sensing technology for masonry retaining walls and trees 被引量:2
8
作者 Peichen Wu Daoyuan Tan +4 位作者 Shaoqun Lin Wenbo Chen Jianhua Yin Numan Malik An Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1064-1076,共13页
Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extrem... Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extreme weather,such as typhoons and heavy rains,may cause rupture or root failure of those trees,thus resulting in instability of the retaining walls.A monitoring and warning system for the movement of masonry retaining walls and sway of trees has been designed with the application of fiber Bragg grating(FBG)sensing technology.The monitoring system is also equipped with a solar power system and 4G data transmission devices.The key functions of the proposed monitoring system include remote sensing and data access,early warning,and real-time data visualization.The setups and working principles of the monitoring systems and related transducers are introduced.The feasibility,accuracy,serviceability and reliability of this monitoring system have been checked by in-site calibration tests and four-month monitoring.Besides,a two-level interface has been developed for data visualization.The monitoring results show that the monitored masonry retaining wall had a reversible movement up to 2.5 mm during the monitoring period.Besides,it is found that the locations of the maximum strain on trees depend on the crown spread of trees. 展开更多
关键词 Masonry retaining walls TREE Monitoring Fiber Bragg grating(FBG)sensing Warning system
下载PDF
Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions 被引量:3
9
作者 Ozgur L.Ertugrul Aurelian C.Trandafir 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期417-427,共11页
In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ... In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Cantilever retaining wall Deformable geofoam panel 1-g shaking table tests Dynamic earth pressure Polystyrene Flexibility ratio Analytical approach
下载PDF
Upper bound seismic rotational stability analysis of gravity retaining walls considering embedment depth 被引量:2
10
作者 刘杰 黄达 +1 位作者 杨超 孙莎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4083-4089,共7页
Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of e... Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of embedment depth when assessing the seismic stability of gravity retaining walls with the pattern of pure rotation. In the framework of upper bound theorem of limit analysis, pseudo-static method was applied into two groups of parallel rigid soil slices methods in order to account for the effect of embedment depth on evaluating the critical acceleration of wall-soil system. The present analytical solution is identical to the results obtained from using limit equilibrium method, and the two methods are based on different theory backgrounds. Parameter analysis indicates that the critical acceleration increases slowly when the ratio of the embedment depth to the total height of the wall is from 0 to 0.15 and increases drastically when the ratio exceeds 0.15. 展开更多
关键词 重力式挡土墙 稳定性分析 抗震稳定性 旋转模式 埋深 临界加速度 上界 埋置深度
下载PDF
Comparison of Seismic Design Codes between China and the United States for Reinforced Soil Retaining Walls
11
作者 XU Peng TIAN Hongcheng +1 位作者 JIANG Guanlu WANG Zhimeng 《Earthquake Research in China》 CSCD 2019年第1期147-152,共6页
Because of its excellent seismic performance, reinforced soil retaining walls are increasingly used in civil engineering. Although many countries have published corresponding design codes, the differences between them... Because of its excellent seismic performance, reinforced soil retaining walls are increasingly used in civil engineering. Although many countries have published corresponding design codes, the differences between them are still relatively large. Using the FHWA Code and the Code for Seismic Design of Railway Engineering(CSDRE), stability calculations of reinforced soil retaining walls were carried out and the similarities and differences between these two design codes were analyzed. According to the comparative analysis, the following conclusions are drawn: the inertia force, the earth pressure and the tensile force of reinforcements calculated from the CSDRE are less than those from the FHWA Code, and the safety factor calculated from the former is larger. Although the M-O method is recommended to calculate the dynamic earth pressure, the FHWA Code suggests a higher action point as compared to the CSDRE. 展开更多
关键词 SEISMIC performance Reinforced soil retaining WALL INERTIA FORCE Earth pressure TENSILE FORCE
下载PDF
Dynamic Behavior of Gravity Retaining Walls with Coral Sand Backfill Under Earthquakes:Shaking Table Tests
12
作者 ZHANG Yan-ling WANG Cheng-long +1 位作者 DING Xuan-ming WU Qi 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期839-848,共10页
The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Pa... The retaining walls in coral sand sites are inevitably threatened by earthquakes. A series of shaking table tests were carried out to study the seismic stability of gravity retaining walls with coral sand backfill. Parallel tests with quartz sand were performed to compare and discuss the special dynamic properties of coral sand sites. The results show that the acceleration difference between the retaining wall and the coral sand backfill is 76%-92% that of the quartz sand,which corresponds to the larger liquefaction resistance of coral sand compared with the quartz sand. However, the horizontal displacement of the retaining walls with coral sand backfill reaches 79% of its own width under 0.4g vibration intensity. The risk of instability and damage of the retaining walls with coral sand backfill under strong earthquakes needs attention. 展开更多
关键词 coral sand seismic response LIQUEFACTION shaking table test gravity retaining walls
下载PDF
Seismic analysis of cantilever earth retaining walls embedded in dry sand by simplified approaches and finite element method
13
作者 FERRO Edgar OSS Andrea SIMEONI Lucia 《岩土力学》 EI CAS CSCD 北大核心 2022年第6期1617-1634,共18页
In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently dev... In engineering practice simplified methods are essential to the seismic design of embedded earth retaining walls,as fullydynamic numerical analyses are costly,time-consuming and require specific expertise.Recently developed pseudostatic methods provide earth stresses and internal forces,even in those cases in which the strength of the soil surrounding the structure is not entirely mobilised.Semiempirical correlations or Newmark sliding block method provide an estimate of earthquake-induced permanent displacements.However,the use of these methods is hindered by uncertainties in the evaluation of a few input parameters,affecting the reliability of the methods.This study uses 1 D site response analyses and 2 D fully-dynamic finite element analyses to show that simplified methods can provide a reasonable estimate of the maximum bending moment and permanent displacements for stiff cantilever walls embedded in uniform sand,providing that a few input parameters are evaluated through semiempirical correlations and a simple 1 D site response analysis. 展开更多
关键词 embedded retaining wall seismic design finite elements pseudostatic methods NEWMARK permanent displacement
下载PDF
Lateral Earth Pressure Coefficient and Lateral Earth Pressure against Retaining Walls
14
作者 Jose Medina Nicolas Sau Qutberto Acuna 《Journal of Geological Resource and Engineering》 2018年第6期251-260,共10页
According the Coulomb earth pressure theory,it is obtained that,for normally consolidated soils,the lateral pressure coefficient of a soil at rest is equal to 1,and it is independent of the soil type,either granular o... According the Coulomb earth pressure theory,it is obtained that,for normally consolidated soils,the lateral pressure coefficient of a soil at rest is equal to 1,and it is independent of the soil type,either granular or cohesive;or that the material is in a loose or compact state;hard or a soft cohesive soil.Also,a methodology to calculate the earth pressure for intermediate states between at rest condition and the active pressure is presented.In addition,a methodology to calculate the earth pressure for intermediate states between at rest condition and the passive pressure is presented.Two practical examples are presented:one for a frictionless wall;and another for a coarse wall.Practical recommendations are given for the use of the lateral earth pressure coefficient for different applications. 展开更多
关键词 LATERAL EARTH PRESSURE at REST retaining wall active THRUST passive THRUST Rankine Coulomb LATERAL EARTH PRESSURE COEFFICIENT LATERAL EARTH PRESSURE COEFFICIENT at REST
下载PDF
Lateral Displacement of Retaining Walls
15
作者 Jose Medina Nicolas Sau Jestls Quintana 《Journal of Geological Resource and Engineering》 2016年第6期251-256,共6页
下载PDF
含建筑桩基的顺层岩质边坡桩锚支护体系振动台模型试验研究
16
作者 吴曙光 毛振南 +2 位作者 潘林 薛尚铃 徐革 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第2期11-22,共12页
基于Bockinghamπ定理,对具有建筑桩基的顺层岩质边坡桩锚支护体系开展振动台模型试验,通过分析预应力锚索、建筑桩基的应变以及边坡坡顶加速度,研究支护体系的动力响应规律。结果表明,预应力锚索的应变在地震波加速度达到峰值时达到最... 基于Bockinghamπ定理,对具有建筑桩基的顺层岩质边坡桩锚支护体系开展振动台模型试验,通过分析预应力锚索、建筑桩基的应变以及边坡坡顶加速度,研究支护体系的动力响应规律。结果表明,预应力锚索的应变在地震波加速度达到峰值时达到最大值,且上排锚索受力大于下排锚索,随着地震幅值的增大,最上排锚索锚固段率先发生滑移破坏失去锚固作用;建筑桩基应变最大值点位于滑动面以下一定深度,且远离边坡坡面的建筑桩基受力大于邻近边坡坡面的建筑桩基;坡顶各点峰值加速度随地震波幅值增大整体表现为线性增大,但在Wenchuan-Wolong波(0.55g)和Sin波(0.4g)工况时,各点峰值加速度相对有所下降,随着地震波幅值增大,各点峰值加速度放大系数在汶川波和正弦波作用下并非单调变化,而是表现为先减小后增大波动变化特点。 展开更多
关键词 建筑桩基 顺层岩质边坡 桩锚挡墙 振动台 模型试验
下载PDF
基于遗传算法的空箱式挡土墙多目标优化设计
17
作者 王丽 徐鹏飞 +3 位作者 刘松 郭瑞 徐昕 张康 《水利水电科技进展》 CSCD 北大核心 2024年第2期79-86,共8页
为高效、准确、自动化地实现空箱结构的优化设计,以空箱式挡土墙为研究对象,基于Python语言和ABAQUS软件进行参数化建模,实现了结构建模及有限元计算分析全套流程的自动化。结合某水闸工程中的一座空箱式挡土墙结构,以多个强度和稳定性... 为高效、准确、自动化地实现空箱结构的优化设计,以空箱式挡土墙为研究对象,基于Python语言和ABAQUS软件进行参数化建模,实现了结构建模及有限元计算分析全套流程的自动化。结合某水闸工程中的一座空箱式挡土墙结构,以多个强度和稳定性指标的最优化和混凝土体积的最小化为目标,以规范要求的指标阈值、几何尺寸和体积限制为约束条件,采用非支配排序遗传算法(NSGA-Ⅱ算法)进行空箱式挡土墙多目标优化设计。为进一步提高计算效率,基于人工神经网络算法建立了代理模型,实现了与实际有限元模型的高度近似。结果表明,依据所提出的优化设计方法进行空箱式挡土墙多目标优化设计,可以在有效控制强度和稳定性的前提下尽可能地缩减混凝土用量,具有显著的经济效益。 展开更多
关键词 空箱式挡土墙 参数化建模 NSGA-Ⅱ算法 代理模型 结构优化设计
下载PDF
筋材布设方式对加筋土挡墙动力响应的影响
18
作者 靳静 张森 +2 位作者 李智广 梁小勇 于远亮 《河北科技大学学报》 CAS 北大核心 2024年第1期82-90,共9页
针对目前加筋土挡墙设计和施工中筋材布设方式大多为等长形的问题,提出一种倒梯形的筋材布设方式,并基于挡墙位移分区理论和有限差分Flac^(3D)数值模拟,建立加筋土挡墙三维分析模型,探讨不同峰值加速度下3种加筋土挡墙对位移、水平土压... 针对目前加筋土挡墙设计和施工中筋材布设方式大多为等长形的问题,提出一种倒梯形的筋材布设方式,并基于挡墙位移分区理论和有限差分Flac^(3D)数值模拟,建立加筋土挡墙三维分析模型,探讨不同峰值加速度下3种加筋土挡墙对位移、水平土压力、筋材拉应力及潜在破裂面的影响。结果表明,随峰值加速度增大,挡墙位移逐渐增大,同一荷载作用下,改变筋材布设方式,侧向水平位移减少9.3%,竖向沉降减少5.3%;3种形式挡墙水平土压力相差不大,最大水平土压力分布在挡墙的中下部;筋材拉应力随峰值加速度的增大,沿墙高从单峰型转化为双峰型分布,最大值位于挡墙中下部;潜在破裂面填土区破裂带的形状与筋材的布设方式有关。所提出的倒梯形筋材布设方式对加筋土挡墙的抗震效果更好,可为施工设计中加筋土挡墙筋材布设提供参考。 展开更多
关键词 地基基础工程 加筋土挡墙 位移分区理论 数值模拟 布筋形式 抗震性能
下载PDF
基于拉压杆模型的装配式混凝土挡墙结构设计方法
19
作者 蔡建国 钱润民 +1 位作者 陈中向 冯健 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期639-646,共8页
为了研究装配式混凝土箱体挡墙结构在水压力和土压力共同作用下的受力机理,提出了一种基于拉压杆模型的装配式混凝土挡墙结构设计方法.以体积和应变能为优化目标,采用Tosca软件对数值模拟得到的主要受力骨架进行拓扑优化.构建拉压杆模型... 为了研究装配式混凝土箱体挡墙结构在水压力和土压力共同作用下的受力机理,提出了一种基于拉压杆模型的装配式混凝土挡墙结构设计方法.以体积和应变能为优化目标,采用Tosca软件对数值模拟得到的主要受力骨架进行拓扑优化.构建拉压杆模型,结合箱体挡墙结构的破坏机理,分析并推导出侧墙受压、临水面挡墙和集束连接受拉3种主要破坏模式的承载力公式.实际工程对比分析结果表明:进行900次模型优化后,优化形态和应变能基本保持不变;基于拉压杆模型的装配式混凝土箱体挡墙结构的承载能力低于规范值和有限元模拟值,但误差均保持在16%范围内,从而验证了该方法的合理性. 展开更多
关键词 装配式混凝土箱体挡墙结构 受力机理 数值模拟 拓扑优化 拉压杆模型
下载PDF
强夯作用下回填砂土挡墙墙后土压力分布研究
20
作者 许晓亮 曾林风 +2 位作者 黄闻捷 张家富 裴丽 《地下空间与工程学报》 CSCD 北大核心 2024年第1期171-180,共10页
挡土墙墙后土压力分布是墙体形状及配筋设计的重要依据,为研究强夯作用下挡墙墙后土压力分布规律,开展了自重、堆载及强夯荷载下的挡土墙物理模型试验,通过不同深度的土压力监测,分析了夯击落距和夯击次数对墙后土压力分布的影响,重点... 挡土墙墙后土压力分布是墙体形状及配筋设计的重要依据,为研究强夯作用下挡墙墙后土压力分布规律,开展了自重、堆载及强夯荷载下的挡土墙物理模型试验,通过不同深度的土压力监测,分析了夯击落距和夯击次数对墙后土压力分布的影响,重点分析了强夯冲击松动区的影响,并基于等效静力法修正了强夯作用下墙后土压力理论计算公式。结果表明:单次夯击作用下墙后土压力瞬间增大至极值后逐渐衰减至稳定,随着夯击次数的增多,土体逐渐密实,相应的墙后土压力会逐次增加;浅部土体在强夯作用下会形成冲击松动区,松动区内土体变得松散从而土压力值较小,而松动区下部土压力随深度迅速增大后再减小,呈“鼓肚”状非线性分布;松动区土体重度、松动区厚度尤其是后者对于墙后土压力理论分布曲线影响较大,考虑松动区影响的墙后土压力等效静力法修正理论公式更符合实际情况。 展开更多
关键词 挡土墙 强夯 模型试验 松动区 土压力分布
下载PDF
上一页 1 2 238 下一页 到第
使用帮助 返回顶部