The changes of taxonomical composition of the Late Jurassic- Early Cretaceous palynofloras are revealed, in the upper stream of Bureya River in Bureya Basin. The palynofloras are dominated as follows: the Berriasian ...The changes of taxonomical composition of the Late Jurassic- Early Cretaceous palynofloras are revealed, in the upper stream of Bureya River in Bureya Basin. The palynofloras are dominated as follows: the Berriasian one by ferns (Cyatheaceae, Dicksoniaceae, Osmundaceae), Classopollis and bisaccate pollen; the Valanginiar-Hauterivian one by ferns (Cyatheaceae, Dicksoniaceae), Ginkgocycadophytus and bisaccate pollen; the Barremian one by ferns (Cyatheaceae, Dicksoniaceae); the Aptian one by ferns (Cyatheaceae, Dicksoniaceae, Gleicheniaceae) and Ginkgocycadophytus; and the Albian one by ferns (Schizaeaceae) and bisaccate pollen. In the Albian the floral diversity raises with the angiosperms appearing.展开更多
Sedimentary facies of the Tsagayan Formation is distributed in the eastern Zeya-Bureya Basin has been analyzed. The formation is of the Maastrichtian to Danian in age and characterized by the cyclicity of the fining-u...Sedimentary facies of the Tsagayan Formation is distributed in the eastern Zeya-Bureya Basin has been analyzed. The formation is of the Maastrichtian to Danian in age and characterized by the cyclicity of the fining-upwards successions. Analysis of environmental changes during the K/T boundary is the focus of this study. Five facies have been identified: Facies A, thick and laterally extensive coarse-grained to medium-grained sandstone units, interpreted as channelfill deposits; Facies B, parallel-laminated to massive mudstone units interpreted as interchannel lakes and flood plain deposits; Facies C, sheet-like medium-grained to fine-grained sandstones interpreted as crevasse splay deposits; Facies D, coal to coaly mudstone beds interpreted as deposits of peatlands; Facies E, very poorly sorted sandy mudstone beds interpreted as debris flow deposits. Fluvial environments with the low-relief flat topography was inferred. A channel transported large volumes of clasts, and a flood basin with interchannel lakes and peatlands was deciphered. Any distinct change of sedimentary environments has not been identified throughout the Tsagayan Formation (including the K/T boundary). However, two beds of debris flow deposits were identified. The one occurs at the uppermost part of the lower Tsagayan Subformation and contains dinosaur fossils. The other is intercalated in the upper Tsagayan Subformation.展开更多
文摘The changes of taxonomical composition of the Late Jurassic- Early Cretaceous palynofloras are revealed, in the upper stream of Bureya River in Bureya Basin. The palynofloras are dominated as follows: the Berriasian one by ferns (Cyatheaceae, Dicksoniaceae, Osmundaceae), Classopollis and bisaccate pollen; the Valanginiar-Hauterivian one by ferns (Cyatheaceae, Dicksoniaceae), Ginkgocycadophytus and bisaccate pollen; the Barremian one by ferns (Cyatheaceae, Dicksoniaceae); the Aptian one by ferns (Cyatheaceae, Dicksoniaceae, Gleicheniaceae) and Ginkgocycadophytus; and the Albian one by ferns (Schizaeaceae) and bisaccate pollen. In the Albian the floral diversity raises with the angiosperms appearing.
文摘Sedimentary facies of the Tsagayan Formation is distributed in the eastern Zeya-Bureya Basin has been analyzed. The formation is of the Maastrichtian to Danian in age and characterized by the cyclicity of the fining-upwards successions. Analysis of environmental changes during the K/T boundary is the focus of this study. Five facies have been identified: Facies A, thick and laterally extensive coarse-grained to medium-grained sandstone units, interpreted as channelfill deposits; Facies B, parallel-laminated to massive mudstone units interpreted as interchannel lakes and flood plain deposits; Facies C, sheet-like medium-grained to fine-grained sandstones interpreted as crevasse splay deposits; Facies D, coal to coaly mudstone beds interpreted as deposits of peatlands; Facies E, very poorly sorted sandy mudstone beds interpreted as debris flow deposits. Fluvial environments with the low-relief flat topography was inferred. A channel transported large volumes of clasts, and a flood basin with interchannel lakes and peatlands was deciphered. Any distinct change of sedimentary environments has not been identified throughout the Tsagayan Formation (including the K/T boundary). However, two beds of debris flow deposits were identified. The one occurs at the uppermost part of the lower Tsagayan Subformation and contains dinosaur fossils. The other is intercalated in the upper Tsagayan Subformation.