传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先...传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先验知识,融合了神经网络拟合复杂变量的能力,赋予了传统神经网络所缺乏的物理可解释性。应用该算法模型,提出了一种基于PINN的Burgers方程求解模型,该算法模型在训练中施加物理信息约束,因此能用少量的训练样本学习预测到分布在时空域上的偏微分方程模型。实验结果表明,在1+1维Burgers方程算例下,所提方法相比于经典的机器学习算法能有效捕抓到方程的变化并进行精确模拟,相比于有限差分法,可以大幅度缩短模拟时间。通过对不同的网络参数进行比较实验,所提方法在10%的噪声破坏下能产生合理的识别准确度,网络逼近方程的待定系数误差在0.001以内。展开更多
文摘传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先验知识,融合了神经网络拟合复杂变量的能力,赋予了传统神经网络所缺乏的物理可解释性。应用该算法模型,提出了一种基于PINN的Burgers方程求解模型,该算法模型在训练中施加物理信息约束,因此能用少量的训练样本学习预测到分布在时空域上的偏微分方程模型。实验结果表明,在1+1维Burgers方程算例下,所提方法相比于经典的机器学习算法能有效捕抓到方程的变化并进行精确模拟,相比于有限差分法,可以大幅度缩短模拟时间。通过对不同的网络参数进行比较实验,所提方法在10%的噪声破坏下能产生合理的识别准确度,网络逼近方程的待定系数误差在0.001以内。