The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob...In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.展开更多
In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is cruci...In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.展开更多
The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial ...The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.展开更多
This paper discusses the numerical solution of Burgers' equation on unbounded domains. Two artificial boundaries are introduced and boundary conditions are obtained on the artificial boundaries, which are in nonlinea...This paper discusses the numerical solution of Burgers' equation on unbounded domains. Two artificial boundaries are introduced and boundary conditions are obtained on the artificial boundaries, which are in nonlinear forms. Then the original problem is reduced to an equivalent problem on a bounded domain. Finite difference method is applied to the reduced problem, and some numerical examples are given to show the effectiveness of the new approach.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers e...Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.展开更多
The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynom...The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.展开更多
In this work, we study the similarity analysis of the generalized nonlinear Burgers' equation having diffusivity and viscosity as a general functions of the particle velocity. We perform the symmetry analysis and exh...In this work, we study the similarity analysis of the generalized nonlinear Burgers' equation having diffusivity and viscosity as a general functions of the particle velocity. We perform the symmetry analysis and exhibit exact solutions for various forms of the diffusivity and viscosity.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.
文摘In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.
文摘In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.
基金S.Engu was supported by Council of Scientific and Industrial Research,India (File no. 25 (0302)/19/EMR-Ⅱ)。
文摘The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.
基金Research is supported in part by National Natural Science Foundation of China (No. 10471073) and RGC of Hong Kong and in part by RGC of Hong Kong and FRG of Hong Kong Baptist University.
文摘This paper discusses the numerical solution of Burgers' equation on unbounded domains. Two artificial boundaries are introduced and boundary conditions are obtained on the artificial boundaries, which are in nonlinear forms. Then the original problem is reduced to an equivalent problem on a bounded domain. Finite difference method is applied to the reduced problem, and some numerical examples are given to show the effectiveness of the new approach.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.
文摘Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.
基金Supported by the US Department of Energy under the PSAAP Program
文摘The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.
文摘In this work, we study the similarity analysis of the generalized nonlinear Burgers' equation having diffusivity and viscosity as a general functions of the particle velocity. We perform the symmetry analysis and exhibit exact solutions for various forms of the diffusivity and viscosity.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.