In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ...In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its...By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.展开更多
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral fo...A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.展开更多
Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-par...Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.展开更多
Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhom...Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero- Degasperis-Focas equation.展开更多
In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under d...In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the pa...A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation.展开更多
In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which...In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.展开更多
Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2...Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.展开更多
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbit...A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbitrariness of the manifold in Painlevé analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.展开更多
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solution...Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.展开更多
The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich e...The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.展开更多
In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some e...In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.展开更多
The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differe...The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.展开更多
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the meth...Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters...In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters are obtained, which are expressed by hyperbolic functions, trigonometric functions and rational functions. When the parameters are taken as special values, the solitary waves are derived from the travelling waves. The (G'/G)-expansion method presents a wider applicability for handling nonlinear wave equations.展开更多
In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.
In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pr...In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
文摘In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
文摘By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.
文摘A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.
文摘Under the travelling wave transformation, the Camassa-Holm equation with dispersion is reduced to an integrable ordinary differential equation (ODE), whose general solution can be obtained using the trick of one-parameter group. Furthermore, by using a complete discrimination system for polynomial, the classification of all single travelling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an affine subspace structure in the set of the solutions of the reduced ODE is obtained. More generally, an implicit linear structure in the Camassa-Holm equation with dispersion is found. According to the linear structure, we obtain the superposition of multi-solutions to Camassa-Holm equation with dispersion.
基金The project supported by Scientific Research and of Education Department of Heilongjiang Province of China under Grant No. 11511008
文摘Under the travelling wave transformation, Calogero-Degasperis-Focas equation is reduced to an ordinary differential equation. Using a symmetry group of one parameter, this ODE is reduced to a second-order linear inhomogeneous ODE. Furthermore, we apply the change of the variable and complete discrimination system for polynomial to solve the corresponding integrals and obtained the classification of all single travelling wave solutions to Calogero- Degasperis-Focas equation.
基金Supported by the NNSF of China(60464001) Guangxi Science Foundation(0575092).
文摘In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
基金Supported by the Postdoctoral Science Foundation of ChinaChinese Basic Research Plan"MathematicsMechanization and A Platform
文摘A Riccati equation involving a parameter and symbolic computation are used to uniformly construct the different forms of travelling wave solutions for nonlinear evolution equations.It is shown that the sign of the parameter can be applied in judging the existence of various forms of travelling wave solutions.An efficiency of this method is demonstrated on some equations,which include Burgers Huxley equation,Caudrey Dodd Gibbon Kawada equation,generalized Benjamin Bona Mahony equation and generalized Fisher equation.
基金supported by the National Natural Science Foundation of China (No.10461005)the Ph.D.Programs Foundation of Ministry of Education of China (No.20070128001)the High Education Science Research Program of Inner Mongolia (No.NJZY08057)
文摘In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.
文摘Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.
文摘A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of 'rank'. The key idea of this method is to make use of the arbitrariness of the manifold in Painlevé analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.
基金Supported by the Natural Science Foundation and the High Education Science Research ProgramNJ0 2 0 35 of Inner Mongoli
文摘Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
文摘The compound KdV-Burgers equation and combined KdV-mKdV equation are real physical models concerning many branches in physics.In this paper,applying the improved trigonometric function method to these equations,rich explicit and exact travelling wave solutions,which contain solitary-wave solutions,periodic solutions,and combined formal solitary-wave solutions,are obtained.
基金supported by the Research Foundation of Education Bureau of Hubei Province,China (Grant No Z200612001)the Natural Science Foundation of Yangtze University (Grant No 20061222)
文摘In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.
文摘The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.
文摘Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.
基金Supported by the Natural Science Foundation of Education Department of Henan Province(2011Bl10013) Supported by the Youth Science Foundation of Henan University of Science and Tech- nology(2008QN026)
文摘In this paper the ( G'/G )-expansion method is used to find exact travelling wave solutions for a combined KdV and Schwarzian KdV equation. As a result, multiple travelling wave solutions with arbitrary parameters are obtained, which are expressed by hyperbolic functions, trigonometric functions and rational functions. When the parameters are taken as special values, the solitary waves are derived from the travelling waves. The (G'/G)-expansion method presents a wider applicability for handling nonlinear wave equations.
文摘In this paper,we obtain some exact travelling wave solutions for the GF equation,the KdV Burgers equation and the RLW Burges equation with the aid of the balanced principle of the homogeneous terms.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB318000)
文摘In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.