In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with sol...We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.展开更多
In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order diff...In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.展开更多
The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differe...The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.展开更多
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,w...In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.展开更多
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new ...We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.展开更多
Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight...Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight. The mathematical tool that made it possible to explore and analyze this equation is the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning' functions. The analytical form of the solutions chosen in this manuscript is particular in the sense that it contains within its bosom, a package of solitary waves made up of three solitons, especially, the bright type soliton, the hybrid soliton and the dark type soliton which we estimate capable in their interactions of generating new hybrid or multi-form solitons. Existence conditions of the obtained solitons have been determined. It emerges that, these existence conditions of the chosen ansatz could open the way to other new varieties of fifth-order KdV equations including to which it will be one of the solutions. Some of the obtained solitons are exact solutions. Intense numerical simulations highlighted numerical stability and confirmed the hybrid character of the obtained solutions. These results will help to model new nonlinear wave phenomena, in plasma media and in fluid dynamics, especially, on the shallow water surface.展开更多
The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave t...The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation in chiding diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well, This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natural topography.展开更多
In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantiti...In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantities and criterion equation which deduces these conserved quantities are presented.This result establishes the theory basis for further researches on conservation laws of Tzénoff equations of the higher-order nonholonomic constraint system.展开更多
In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate ass...In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate assumptions, we acquire a precise estimate of the upper bound for its Hausdorff and Fractal dimensions.展开更多
This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausd...This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.展开更多
In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial m...In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.展开更多
This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect...This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.展开更多
In view of a new idea on initial conditions, an open problem of nonlinear evolution equations with higher order, which was given by J. L. Lions, is solved. Effect of our results is shown on an example.
By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended hom...By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.展开更多
In this paper, we reveal the multiple boundary layer phenomena of the solution of nonlinear higher order elliptic equations with perturbation both in boundary and in operator, and provide a method to find uniformly va...In this paper, we reveal the multiple boundary layer phenomena of the solution of nonlinear higher order elliptic equations with perturbation both in boundary and in operator, and provide a method to find uniformly valid asymptotic solution of arbitrary order for these types of problems.展开更多
We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make a...We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness o...In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.展开更多
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金Supported by the NNSF of China (10471107)RFDP of Higher Education of China (20060486001)
文摘We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.
文摘In this paper, by using the Nevanlinna Theory on angular domain, we establish a theorem which concerns the growth of entire function and his zero. As an application, we survey the location of zero of higher order differential equation, which can be regarded as an alternating but precise version of Wu and Yi.
文摘The travelling solitary wave solutions to the higher order Korteweg-de Vries equation are obtained by using tanh-polynomial method. The method is effective and concise, which is also applied to various partial differential equations to obtain traveling wave solutions. The numerical simulation of the solutions is given for completeness. Numerical results show that the tanh-polynomial method works quite well.
基金supported by the Jiangxi Provincial Natural Science Foundation(20202BABL211003)the Science and Technology Project of Jiangxi Education Department(GJJ180354).
文摘In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnφ(⋯r2(r1x^(Δ))^(Δ)⋯)^(Δ)]^(Δ)(t)+h(t)f(x(τ(t)))=0 on an arbitrary time scale T with supT=∞,where n≥2,φ(u)=|u|^(γ)sgn(u)forγ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈C_(rd)(T,(0,∞)).The functionτ∈C_(rd)(T,T)satisfiesτ(t)≤t and lim_(t→∞)τ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.
基金National Natural Science Foundation of China under Grant No.10675065
文摘We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.
文摘Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight. The mathematical tool that made it possible to explore and analyze this equation is the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning' functions. The analytical form of the solutions chosen in this manuscript is particular in the sense that it contains within its bosom, a package of solitary waves made up of three solitons, especially, the bright type soliton, the hybrid soliton and the dark type soliton which we estimate capable in their interactions of generating new hybrid or multi-form solitons. Existence conditions of the obtained solitons have been determined. It emerges that, these existence conditions of the chosen ansatz could open the way to other new varieties of fifth-order KdV equations including to which it will be one of the solutions. Some of the obtained solitons are exact solutions. Intense numerical simulations highlighted numerical stability and confirmed the hybrid character of the obtained solutions. These results will help to model new nonlinear wave phenomena, in plasma media and in fluid dynamics, especially, on the shallow water surface.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.59839330 and No.19772031)
文摘The 'surface roller' to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation in chiding diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well, This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natural topography.
基金Project supported by the National Natural Science Foundation of China(Grant No.10972127)
文摘In this paper,the Mei symmetry of Tzénoff equations for the higher-order nonholonomic system and the new conserved quantities derived from that are researched,and the function expression of new conserved quantities and criterion equation which deduces these conserved quantities are presented.This result establishes the theory basis for further researches on conservation laws of Tzénoff equations of the higher-order nonholonomic constraint system.
文摘In this paper, we investigate the finite dimensions of the global attractor for nonlinear higher-order coupled Kirchhoff type equations with strong linear damping in Hilbert spaces E0?and E1. Under the appropriate assumptions, we acquire a precise estimate of the upper bound for its Hausdorff and Fractal dimensions.
文摘This paper mainly deals with the higher-order coupled Kirchhoff-type equations with nonlinear strong damped and source terms in a bounded domain. We obtain some results that are estimation of the upper bounds of Hausdorff dimension and Fractal dimension of the global attractor.
文摘In this paper, we mainly deal with a class of higher-order coupled Kirch-hoff-type equations. At first, we take advantage of Hadamard’s graph to get the equivalent form of the original equations. Then, the inertial manifolds are proved by using spectral gap condition. The main result we gained is that the inertial manifolds are established under the proper assumptions of M(s) and gi(u,v), i=1, 2.
基金supported by the National Natural Science Foundation of China (11101096)
文摘This article discusses the problems on the existence of meromorphic solutions of some higher order linear differential equations with meromorphic coefficients. Some nice results are obtained. And these results perfect the complex oscillation theory of meromorphic solutions of linear differential equations.
基金supported by TWAS,UNESO and AMSS in Chinese AcademyThe research of the third author is partially supported by NSFC(11001239)
文摘In view of a new idea on initial conditions, an open problem of nonlinear evolution equations with higher order, which was given by J. L. Lions, is solved. Effect of our results is shown on an example.
文摘By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.
文摘In this paper, we reveal the multiple boundary layer phenomena of the solution of nonlinear higher order elliptic equations with perturbation both in boundary and in operator, and provide a method to find uniformly valid asymptotic solution of arbitrary order for these types of problems.
文摘We investigate the global well-posedness and the global attractors of the solutions for the Higher-order Kirchhoff-type wave equation with nonlinear strongly damping: . For strong nonlinear damping σ and ?, we make assumptions (H<sub>1</sub>) - (H<sub>4</sub>). Under of the proper assume, the main results are existence and uniqueness of the solution in proved by Galerkin method, and deal with the global attractors.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
文摘In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: . At first, we prove the existence and uniqueness of the solution by priori estimation and the Galerkin method. Then, we obtain to the existence of the global attractor. At last, we consider that the estimation of the upper bounds of Hausdorff and fractal dimensions for the global attractors are obtained.