期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Formation of the primary petroleum reservoir in Wumaying inner buried-hill of Huanghua Depression, Bohai Bay Basin, China 被引量:1
1
作者 JIN Fengming WANG Xin +5 位作者 LI Hongjun WU Xuesong FU Lixin LOU Da ZHANG Jinning FENG Jianyuan 《Petroleum Exploration and Development》 2019年第3期543-552,共10页
Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derive... Well Yinggu 1 drilled on the tectonic belt of the Wumaying buried-hill in Huanghua Depression obtained non-H2S high-yield oil and gas flow from the Permian Lower Shihezi Formation sandstone. The oil and gas are derived from the Upper Paleozoic coal source rock, the petroleum reservoir is an inner buried-hill primary oil and gas accumulation, showing a good prospect of the Paleozoic inner buried-hill primary reservoir exploration. The formation and accumulation of the primary petroleum reservoir in the Wumaying inner buried-hill are discussed by studying the primary source conditions, the inner buried-hill reservoir-cap combinations and the hydrocarbon accumulation period. The primary petroleum reservoir has three preponderant characteristics of accumulation: secondary large-scale gas generation of coal source rock, multi reservoir-cap combinations and mainly late hydrocarbon charging, which formed the compound hydrocarbon accumulation of the above-source sandstone and under-source carbonate rock in the Paleozoic inner buried-hill. Along with the Mesozoic and Cenozoic tectonic activities, the formation of the primary reservoir in Wumaying inner buried-hill is characterized by "mixed oil and gas charge in local parts in early stage, adjustment accumulation due to structural high migration in middle stage, and large-scale natural gas charge and compound accumulation in late stage". 展开更多
关键词 Bohai Bay Basin Huanghua DEPRESSION Wumaying buried-hill INNER buried-hill Paleozoic primary RESERVOIR compound ACCUMULATION ACCUMULATION process
下载PDF
Formation and characteristics of large-medium buried-hill hydrocarbon reservoirs in Bohai Sea
2
作者 Yunhua Deng 《Petroleum Research》 2017年第2期97-106,共10页
There had been a long history of the buried-hill hydrocarbon reservoirs exploration operation in Bohai Sea.Between 1970s and 1990s,based on the onshore exploration experiences in eastern China,many boreholes were dril... There had been a long history of the buried-hill hydrocarbon reservoirs exploration operation in Bohai Sea.Between 1970s and 1990s,based on the onshore exploration experiences in eastern China,many boreholes were drilled in order to detect large-scale carbonate buried-hill hydrocarbon reservoirs in Bohai Sea,but no prominent discoveries was achieved.In-depth re-evaluation and examination were conducted upon these exploration failures,a new understanding that Bohai Sea had unique geological characteristics of buried hills was concluded.Bedrocks on the uplifts of Bohai oil province were mainly granites and migmatitic granites of Archean,Proterozoic and Mesozoic,as well as minor Lower Paleozoic carbonates.Proterozoic algae dolomite was most favorable for buried-hill hydrocarbon reservoirs however which were not developed in Bohai Sea.A large number of faults in Bohai oil province were developed and faults activities were intense in the late period.Thus,conventionally,reservoirs and preservation conditions of the buried hills were believed to be poor in Bohai Sea,and were not favourable for formation of large-scale buried-hill hydrocarbon reservoirs.Through the long-term practices and deep analyses,the coupling between granites,migmatitic granites and intense bedrock faults was favorable for buried-hill reservoirs with high test production and relatively low core recovery rate.Geophysical data could be used for accurate predictions of bedrock lithology and faults.The monadnock buried hills on the low uplifts adjacent to hydrocarbon-rich sags were covered by shallow to semi-deep lacustrine shale,which was favorable for buried-hill hydrocarbon reservoirs.Under the guidance of a series of innovative understandings,the re-exploration of buried hills in Bohai Sea achieved two largest granite buried-hill oil and gas fields with 100 million tons of reserves.The understanding and practice processes might also inspire exploration of other areas. 展开更多
关键词 The buried-hill hydrocarbon reservoir BEDROCK GRANITE Carbonate rocks Coupling between lithology and fault Bohai Sea
原文传递
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
3
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部