AASHTO’s guideline for geometric design of highways and similar guidelines require that roadside areas on the inside of horizontal curves be cleared of high objects to provide stopping sight distance. The guidelines ...AASHTO’s guideline for geometric design of highways and similar guidelines require that roadside areas on the inside of horizontal curves be cleared of high objects to provide stopping sight distance. The guidelines have analytical models for determining the extent of clearance, known as the horizontal sightline offset or clearance offset, for simple curves. Researchers in the past have developed analytical models for clearance offsets for spiraled and reverse curves. Very few researchers developed analytical models for available sight distances for compound curves. Still missing are models for horizontal sightline offsets and locations of the offsets for compound curves. The objective of this paper is to present development of analytical models and charts for determining horizontal sightline offsets and their locations for compound curves. The paper considers curves whose component arcs are individually shorter than stopping sight distance. The resulting models and the charts have been verified with accurate values determined using graphical methods. The models and the charts will find application in geometric design of highway compound curves.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami...The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.展开更多
The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate ...The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.展开更多
Introduction and Significance: Burn injury (BI) is a considerable health issue which is responsible for around 300,000 deaths and affecting about 11 million people every year worldwide. In Saudi Arabia, the prevalence...Introduction and Significance: Burn injury (BI) is a considerable health issue which is responsible for around 300,000 deaths and affecting about 11 million people every year worldwide. In Saudi Arabia, the prevalence of BIs array from 112 to 518 per 100,000 per year. The appropriate awareness of performing first aid could facilitate to improve the outcomes of burns. Purpose and Objectives: To appraise the community that acknowledges burns, first aid, and associated factors among the community population in Jazan City, Saudi Arabia. The paper aims to identify limitations to encourage additional research and persuade legislators to develop improved burn-injury care recommendations and training programs. Materials and Methods: An observational-based sample survey was conducted among the people who live in Jazan City aging 13 years or more, during April 5 to May 5, 2023. Data collection was done by a validated online self-administrated questionnaire sent randomly to community members in different parts of Jazan City via social media platforms. Collected data were coded and cleaned by an excel program, and finally exported on SPSS 26.0 software. The variables were analyzed using descriptive statistics like frequencies and percentages. Also, the Chi-square test was used to investigate the relation between different variables, with a significance value of P Results: This study included 243 participants (about 62%) among them were mostly male participants (151) having a university degree. The majority of participants 75% did not take any form of BFA training in the past. This study shows that 69.9% of the participants have inadequate awareness, despite 72% having a constructive attitude towards burn first aid. Previous burn-related first aid training was significantly associated with participants’ knowledge of BFA at a p-value less than 0.05. Conclusion: This study indicates a high frequency of Jazan population having inadequate knowledge of burn first aid despite the high prevalence of a favorable attitude. There is a need to develop an effective nationwide burn prevention program and early burn first aid treatment in Saudi Arabia and promote a consistent guideline for burn first aid.展开更多
In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that...Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.展开更多
Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important...Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.展开更多
This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads....This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method.This formula provides a theoretical basis for predicting the compression performance of honeycomb structures.The effects of structural geometric parameters,series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods.Furthermore,the study focuses on the vibration isolation and impact resistance performance of honeycomb panels.The results show that the designed honeycomb structure has good mechanical and energy absorption performance,and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure.The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%.The initial isolation frequency of the isolator is 11.7 Hz.展开更多
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to ach...This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.展开更多
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B...The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.展开更多
Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constra...Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constrained within a curved layer,accompanied by a general geometric potential V_(gq) composed of a compression-corrected geometric potential V_(gq)~*and a novel potential V_(gq)~(**) brought by the deviation.Applying this analysis to the cylindrical layer emerges two types of deviation-induced geometric potential,resulting from the the cases of slant deviation and tangent deviation,respectively,which strongly renormalizes the purely geometric potential and contribute to the energy spectrum based on a very substantial deepening of bound states they offer.展开更多
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjec...The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results.展开更多
Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient ha...Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.展开更多
BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.A...BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.展开更多
Background: Early excision and grafting has been the preferred method of managing major burns around the world since 1970. Considering the advances in health care and the development of new antibiotics over the past 5...Background: Early excision and grafting has been the preferred method of managing major burns around the world since 1970. Considering the advances in health care and the development of new antibiotics over the past 50 years, delayed grafting as a technique for the management of burns over 15%-20% of total body surface area (TBSA) could have comparable results to that of early excision. This study aims to highlight the outcomes of practicing delayed grafting in burn patients. Methods: A case series analysis was performed of 51 patients who were admitted to the burns unit in Sultan Qaboos Hospital Salalah with over 20% TBSA between January 2014 and December 2019. The patients received prophylactic antibiotics and silver sulphadiazine dressing until the burn eschar had completely separated, followed by grafting. Results: Two patients were lost during the entire duration of the study. The mortality rate was comparable to that of early excision, while the rate of hypertrophic scarring was lower than the range reported by other studies. Conclusion: In the management of patients with over 20% TBSA, delayed grafting after complete separation of eschar is still a valid technique.展开更多
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
Objectives: To summarize the current status and outlook of pancreatic duct drainage in the learning curve period of laparoscopic pancreaticoduodenectomy (LPD). Methods: By searching the literature related to the effic...Objectives: To summarize the current status and outlook of pancreatic duct drainage in the learning curve period of laparoscopic pancreaticoduodenectomy (LPD). Methods: By searching the literature related to the efficacy analysis of internal versus external pancreatic duct drainage in pancreaticoduodenectomy (OPD) and the learning curve period of laparoscopic pancreaticoduodenectomy in recent years at home and abroad and making a review. Results: Because of the complexity of the LPD surgical procedure, the high technical requirements and the high complication rate, it is necessary for the operator and his/her team to carry out a certain number of cases to pass through the learning curve in order to have a basic mastery of the procedure. In recent years, more and more pancreatic surgeons have begun to promote and use pancreatic duct drains. However, no consensus conclusion has been reached on whether to choose internal or external drainage for pancreatic duct placement and drainage in LPD. Conclusions: Intraoperative application of pancreatic duct drainage reduces the incidence of pancreatic fistula during the learning curve of laparoscopic pancreaticoduodenectomy. However, external pancreatic duct drainage and internal pancreatic duct drainage have both advantages and disadvantages, so when choosing the drainage method, one should choose the appropriate drainage method in conjunction with one’s own conditions, so as to reduce the incidence of complications.展开更多
文摘AASHTO’s guideline for geometric design of highways and similar guidelines require that roadside areas on the inside of horizontal curves be cleared of high objects to provide stopping sight distance. The guidelines have analytical models for determining the extent of clearance, known as the horizontal sightline offset or clearance offset, for simple curves. Researchers in the past have developed analytical models for clearance offsets for spiraled and reverse curves. Very few researchers developed analytical models for available sight distances for compound curves. Still missing are models for horizontal sightline offsets and locations of the offsets for compound curves. The objective of this paper is to present development of analytical models and charts for determining horizontal sightline offsets and their locations for compound curves. The paper considers curves whose component arcs are individually shorter than stopping sight distance. The resulting models and the charts have been verified with accurate values determined using graphical methods. The models and the charts will find application in geometric design of highway compound curves.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金supported by the National Natural Science Foundation of China(Grant No.51979002)the Fundamental Research Funds for the Central Universities(Grant No.2022YJS080).
文摘The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.
基金Under the auspices of National Natural Science Foundation of China(No.42101414)Natural Science Found for Outstanding Young Scholars in Jilin Province(No.20230508106RC)。
文摘The burning of crop residues in fields is a significant global biomass burning activity which is a key element of the terrestrial carbon cycle,and an important source of atmospheric trace gasses and aerosols.Accurate estimation of cropland burned area is both crucial and challenging,especially for the small and fragmented burned scars in China.Here we developed an automated burned area mapping algorithm that was implemented using Sentinel-2 Multi Spectral Instrument(MSI)data and its effectiveness was tested taking Songnen Plain,Northeast China as a case using satellite image of 2020.We employed a logistic regression method for integrating multiple spectral data into a synthetic indicator,and compared the results with manually interpreted burned area reference maps and the Moderate-Resolution Imaging Spectroradiometer(MODIS)MCD64A1 burned area product.The overall accuracy of the single variable logistic regression was 77.38%to 86.90%and 73.47%to 97.14%for the 52TCQ and 51TYM cases,respectively.In comparison,the accuracy of the burned area map was improved to 87.14%and 98.33%for the 52TCQ and 51TYM cases,respectively by multiple variable logistic regression of Sentind-2 images.The balance of omission error and commission error was also improved.The integration of multiple spectral data combined with a logistic regression method proves to be effective for burned area detection,offering a highly automated process with an automatic threshold determination mechanism.This method exhibits excellent extensibility and flexibility taking the image tile as the operating unit.It is suitable for burned area detection at a regional scale and can also be implemented with other satellite data.
文摘Introduction and Significance: Burn injury (BI) is a considerable health issue which is responsible for around 300,000 deaths and affecting about 11 million people every year worldwide. In Saudi Arabia, the prevalence of BIs array from 112 to 518 per 100,000 per year. The appropriate awareness of performing first aid could facilitate to improve the outcomes of burns. Purpose and Objectives: To appraise the community that acknowledges burns, first aid, and associated factors among the community population in Jazan City, Saudi Arabia. The paper aims to identify limitations to encourage additional research and persuade legislators to develop improved burn-injury care recommendations and training programs. Materials and Methods: An observational-based sample survey was conducted among the people who live in Jazan City aging 13 years or more, during April 5 to May 5, 2023. Data collection was done by a validated online self-administrated questionnaire sent randomly to community members in different parts of Jazan City via social media platforms. Collected data were coded and cleaned by an excel program, and finally exported on SPSS 26.0 software. The variables were analyzed using descriptive statistics like frequencies and percentages. Also, the Chi-square test was used to investigate the relation between different variables, with a significance value of P Results: This study included 243 participants (about 62%) among them were mostly male participants (151) having a university degree. The majority of participants 75% did not take any form of BFA training in the past. This study shows that 69.9% of the participants have inadequate awareness, despite 72% having a constructive attitude towards burn first aid. Previous burn-related first aid training was significantly associated with participants’ knowledge of BFA at a p-value less than 0.05. Conclusion: This study indicates a high frequency of Jazan population having inadequate knowledge of burn first aid despite the high prevalence of a favorable attitude. There is a need to develop an effective nationwide burn prevention program and early burn first aid treatment in Saudi Arabia and promote a consistent guideline for burn first aid.
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
文摘Introduction: The cicatricial acceleration method (MAC®) promotes photobiological effects of an anti-inflammatory and healing nature. Its therapeutic radiation is emitted, producing photobiostimulant effects that result in rapid tissue repair and better tissue quality. The treatment of burns has always been a challenge, which involves both performing surgery and controlling and guiding scar regeneration, avoiding possible morbidities. Objective: To evaluate the effects of applying the MAC methodology with an AlGa (aluminum, gallium arsenide) laser on the time and quality of tissue repair in the skin of rats after induced chemical burns. Method: 22 adult male rats were subjected to a second-degree chemical burn on the back using 50% trichloroacetic acid. After the burns, the animals were randomly separated into 2 groups: control and experimental. The control group (G1) received placebo laser therapy and the laser group (G2) underwent laser irradiation with an energy density of 100 J/cm2. Histological analysis and macroscopic evaluation were carried out by means of the paper template method. Results: Group G1 showed (53%) of the necrosis area and group G2 showed (11%) necrosis area. Conclusion: The cicatricial acceleration method (MAC®) favored the repair of wounds caused by a 2nd-degree chemical burn, optimizing time and improving quality.
文摘Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.
基金supported by the National Natural Science Foundation of China(Grant No.52088102)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820).
文摘This paper presents the design of a novel honeycomb structure with a double curved beam.The purpose of this design is to achieve vibration isolation for the main engine of an offshore platform and reduce impact loads.An analytical formula for the force-displacement relationship of the honeycomb single-cell structure is presented based on the modal superposition method.This formula provides a theoretical basis for predicting the compression performance of honeycomb structures.The effects of structural geometric parameters,series and parallel connection methods on the mechanical and energy absorption properties are investigated through mathematical modeling and experimental methods.Furthermore,the study focuses on the vibration isolation and impact resistance performance of honeycomb panels.The results show that the designed honeycomb structure has good mechanical and energy absorption performance,and its energy absorption effect is related to the geometric parameters and series and parallel connection methods of the structure.The isolation efficiency of the honeycomb with 4 rows and 3 columns reaches 38%.The initial isolation frequency of the isolator is 11.7 Hz.
基金supported by the Major Science and TechnologyTechnol-ogy Projects in Gansu Province(No.22ZD6FA021-5)Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)+1 种基金Science and Technol-ogy Project of Gansu Province(Nos.23YFFA0074,22JR5RA137,and 22JR5RA151)Central Leading Local Science and Technology Development Fund Projects(No.23ZYQA293).
文摘This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.
基金Support by the National Natural Science Foundation of China(No.92258303)the Project of Donghai Laboratory(No.DH-2022ZY0005)。
文摘The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.
基金Project jointly supported by the National Natural Science Foundation of China(Grant No.11934008)funded by the Fund from National Laboratory of Solid State Microstructure of Nanjing University(Grant Nos.M35040 and M35053)the Youth Independent Innovation Fund(Grant No.KYJBJKQTZQ23006)。
文摘Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems,we derive the effective Schr?dinger equation describing the particle constrained within a curved layer,accompanied by a general geometric potential V_(gq) composed of a compression-corrected geometric potential V_(gq)~*and a novel potential V_(gq)~(**) brought by the deviation.Applying this analysis to the cylindrical layer emerges two types of deviation-induced geometric potential,resulting from the the cases of slant deviation and tangent deviation,respectively,which strongly renormalizes the purely geometric potential and contribute to the energy spectrum based on a very substantial deepening of bound states they offer.
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
基金supported by Scientific Research Project of Qiqihar University(145209130)supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2023LHMS05054 and 2023LHMS05017)+3 种基金the Inner Mongolia University of Technology Natural Science Foundation of China(Grant No.DC2200000903)the Program for Innovative Research Teams in Universities of the Inner Mongolia Autonomous Region of China(Grant No.NMGIRT2213)the key technological project of Inner Mongolia(Grant No.2021GG0255 and 2021GG0259)the Fundamental Research Funds for the directly affiliated Universities of Inner Mongolia Autonomous Region(Grant No.JY20220046)。
文摘The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results.
基金supported by the Biomaterials and Regenerative Medicine Institute Cooperative Research Project at Shanghai Jiao Tong University School of Medicine(grant no.2022LHA05)the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery funded by the Science and Technology Commission of Shanghai Municipality(grant no.22Mc1940300).
文摘Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.
基金the Natural Science Foundation of Hunan Provincial Department of Science and Technology,Departmental Joint Fund,No.2023JJ60360.
文摘BACKGROUND Post-burn anxiety and depression affect considerably the quality of life and recovery of patients;however,limited research has demonstrated risk factors associated with the development of these conditions.AIM To predict the risk of developing post-burn anxiety and depression in patients with non-mild burns using a nomogram model.METHODS We enrolled 675 patients with burns who were admitted to The Second Affiliated Hospital,Hengyang Medical School,University of South China between January 2019 and January 2023 and met the inclusion criteria.These patients were randomly divided into development(n=450)and validation(n=225)sets in a 2:1 ratio.Univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with post-burn anxiety and depression dia-gnoses,and a nomogram model was constructed.RESULTS Female sex,age<33 years,unmarried status,burn area≥30%,and burns on the head,face,and neck were independent risk factors for developing post-burn anxiety and depression in patients with non-mild burns.The nomogram model demonstrated predictive accuracies of 0.937 and 0.984 for anxiety and 0.884 and 0.923 for depression in the development and validation sets,respectively,and good predictive per-formance.Calibration and decision curve analyses confirmed the clinical utility of the nomogram.CONCLUSION The nomogram model predicted the risk of post-burn anxiety and depression in patients with non-mild burns,facilitating the early identification of high-risk patients for intervention and treatment.
文摘Background: Early excision and grafting has been the preferred method of managing major burns around the world since 1970. Considering the advances in health care and the development of new antibiotics over the past 50 years, delayed grafting as a technique for the management of burns over 15%-20% of total body surface area (TBSA) could have comparable results to that of early excision. This study aims to highlight the outcomes of practicing delayed grafting in burn patients. Methods: A case series analysis was performed of 51 patients who were admitted to the burns unit in Sultan Qaboos Hospital Salalah with over 20% TBSA between January 2014 and December 2019. The patients received prophylactic antibiotics and silver sulphadiazine dressing until the burn eschar had completely separated, followed by grafting. Results: Two patients were lost during the entire duration of the study. The mortality rate was comparable to that of early excision, while the rate of hypertrophic scarring was lower than the range reported by other studies. Conclusion: In the management of patients with over 20% TBSA, delayed grafting after complete separation of eschar is still a valid technique.
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
文摘Objectives: To summarize the current status and outlook of pancreatic duct drainage in the learning curve period of laparoscopic pancreaticoduodenectomy (LPD). Methods: By searching the literature related to the efficacy analysis of internal versus external pancreatic duct drainage in pancreaticoduodenectomy (OPD) and the learning curve period of laparoscopic pancreaticoduodenectomy in recent years at home and abroad and making a review. Results: Because of the complexity of the LPD surgical procedure, the high technical requirements and the high complication rate, it is necessary for the operator and his/her team to carry out a certain number of cases to pass through the learning curve in order to have a basic mastery of the procedure. In recent years, more and more pancreatic surgeons have begun to promote and use pancreatic duct drains. However, no consensus conclusion has been reached on whether to choose internal or external drainage for pancreatic duct placement and drainage in LPD. Conclusions: Intraoperative application of pancreatic duct drainage reduces the incidence of pancreatic fistula during the learning curve of laparoscopic pancreaticoduodenectomy. However, external pancreatic duct drainage and internal pancreatic duct drainage have both advantages and disadvantages, so when choosing the drainage method, one should choose the appropriate drainage method in conjunction with one’s own conditions, so as to reduce the incidence of complications.