The performance of the algorithm of the data channel scheduling algorithm of latest available unscheduled channel with void filling (LAUC-VF) under bursty traffic is presented firstly. A bursty traffic model for optic...The performance of the algorithm of the data channel scheduling algorithm of latest available unscheduled channel with void filling (LAUC-VF) under bursty traffic is presented firstly. A bursty traffic model for optical burst switch performance simulation is also introduced.展开更多
Since Internet is dominated by TCP-based applications, active queue management (AQM) is considered as an effective way for congestion control. However, most AQM schemes suffer obvious performance degradation with dy...Since Internet is dominated by TCP-based applications, active queue management (AQM) is considered as an effective way for congestion control. However, most AQM schemes suffer obvious performance degradation with dynamic traffic. Extensive measurements found that Internet traffic is extremely bursty and possibly self-similar. We propose in this paper a new AQM scheme called multiscale controller (MSC) based on the understanding of traffic burstiness in multiple time scale. Different from most of other AQM schemes, MSC combines rate-based and queue-based control in two time scales. While the rate-based dropping on burst level (large time scales) determines the packet drop aggressiveness and is responsible for low and stable queuing delay, good robustness and responsiveness, the queue-based modulation of the packet drop probability on packet level (small time scales) will bring low loss and high throughput. Stability analysis is performed based on a fluid-flow model of the TCP/MSC congestion control system and simulation results show that MSC outperforms many of the current AQM schemes.展开更多
文摘The performance of the algorithm of the data channel scheduling algorithm of latest available unscheduled channel with void filling (LAUC-VF) under bursty traffic is presented firstly. A bursty traffic model for optical burst switch performance simulation is also introduced.
基金Supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2003CB314801, the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No. 20040286001 and the National Natural Science Foundation of China under Grant No. 90604003. Acknowledgments The authors would like to thank Professor Guan-Qun Gu for his supervision and Professor Jun Shen for his comments on an early draft of this paper.
文摘Since Internet is dominated by TCP-based applications, active queue management (AQM) is considered as an effective way for congestion control. However, most AQM schemes suffer obvious performance degradation with dynamic traffic. Extensive measurements found that Internet traffic is extremely bursty and possibly self-similar. We propose in this paper a new AQM scheme called multiscale controller (MSC) based on the understanding of traffic burstiness in multiple time scale. Different from most of other AQM schemes, MSC combines rate-based and queue-based control in two time scales. While the rate-based dropping on burst level (large time scales) determines the packet drop aggressiveness and is responsible for low and stable queuing delay, good robustness and responsiveness, the queue-based modulation of the packet drop probability on packet level (small time scales) will bring low loss and high throughput. Stability analysis is performed based on a fluid-flow model of the TCP/MSC congestion control system and simulation results show that MSC outperforms many of the current AQM schemes.