Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simula...Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.展开更多
Acorns of Quercus aliena var. acuteserrata Maxim. are often predated by small mammals and birds in natural forests. These animals not only eat the acorns during the acorn ripening season, but also cache and hoard most...Acorns of Quercus aliena var. acuteserrata Maxim. are often predated by small mammals and birds in natural forests. These animals not only eat the acorns during the acorn ripening season, but also cache and hoard most of the remaining acorns on the forest floor in the soil for their future use. These buried acorns form the main seed resource for regeneration. Burying depth is potentially important for germination and for seedling development. The effects of burying depth on germination and seedling development in relation to acorn size were studied in an experiment, in which acorns were planted at 6 cm-, 12 cm- and 18 cm-depth. The experimental results showed that fewer acorns germinated as burying depth increased. From the deeply buried acorns fewer seedlings emerged at later time than from those acorns buried less deeply. They appeared to have more difficulties to emerge above-ground than die seedlings from shallowly buried acorns. The deeply buried acorns and their seedlings also appeared to be more susceptible to rot. Acorn size did not significantly affect germination and emergence of the seedlings. As early emerged seedlings had longer developmental periods in their first growing season, and therefore grew better than die late emerged seedlings, seedlings from die shallowly buried acorns took the advantage.展开更多
CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.Howe...CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.展开更多
Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr...Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.展开更多
Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or ...Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.展开更多
In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising a...In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines.展开更多
The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid...The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid dynamics(CFD)method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment.Based on cloud chart,concentration at the monitoring site and hazard range of lower explosion limit(LEL)and upper explosion limit(UEL),the influences of leakage hole direction and shape,soil property,burial depth,obstacle type on the diffusion law and hazard range are analyzed.Results show that the leakage gas is not radially diffused until it reaches the ground,and the velocity of gas diffusion to the ground and the hazard range decrease as the angle between the leaking direction and the buoyancy direction increases.Triangular and square leak holes have a faster diffusion rate and a wider hazard range than circular.The diffusion rate of leakage gas in soil rises as soil granularity and porosity increase.The time of leakage gas diffusion to the ground increases significantly with the increase of burial depth,and the hazard range reduces as burial depth increases.Boulder-type obstacles will alter the diffusion path of the leakage gas and accelerate the expansion of the hazard distance,while trench-type obstacles will cause the natural gas to accumulate in the trench and form a high concentration region slowing the expansion of the surface gas concentration.展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to reso...The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.展开更多
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
[Objective] The aim was to provide theoretical basis for the prevention and control of the invasion of Alternanthera philoxeroides(Mart.)Griseb.[Method] Effects of fragmentation intensity of fresh roots and their bu...[Objective] The aim was to provide theoretical basis for the prevention and control of the invasion of Alternanthera philoxeroides(Mart.)Griseb.[Method] Effects of fragmentation intensity of fresh roots and their burial depth on sprouting and early growth of A.philoxeroides were studied by control test.[Result] More sprouts of A.philoxeroides emerged when the fragmentation intensity of fresh roots was higher,while if the fragmentation intensity of fresh roots was lower,the early growth of A.philoxeroides was more rapid.The soil buried depth had significant effect on fresh root sprouts' emergence,but once fresh root sprouts could reach the soil surface and were given enough growth time,even if the fresh roots were buried in different depths,soil buried depth had no significant effect on its young plant growth.[Conclusion] If different fragmentation intensities of fresh roots present,there is a kind of trade-off strategy between root sprouts' emergence and plant' early growth,by which A.philoxeroides can invade new habitat successfully.To control the invasion of A.philoxeroides,it is critical to prevent its fresh root sprouts from emerging to soil surface,that is,to bury the fresh roots at a further soil depth.展开更多
Percutaneous endoscopic gastrostomy(PEG) is a widely used method of nutrition delivery for patients with longterm insufficiency of oral intake. The PEG complication rate varies from 0.4% to 22.5% of cases, with minor ...Percutaneous endoscopic gastrostomy(PEG) is a widely used method of nutrition delivery for patients with longterm insufficiency of oral intake. The PEG complication rate varies from 0.4% to 22.5% of cases, with minor complications being three times more frequent. Buried bumper syndrome(BBS) is a severe complication of this method, in which the internal fixation device migrates alongside the tract of the stoma outside the stomach. Excessive compression of tissue between the external and internal fixation device of the gastrostomy tube is considered the main etiological factor leading to BBS. Incidence of BBS is estimated at around 1%(0.3%-2.4%). Inability to insert, loss of patency and leakage around the PEG tube are considered to be a typical symptomatic triad. Gastroscopy is indicated in all cases in which BBS is suspected. The depth of disc migration in relation to the lamina muscularis propria of the stomach is critical for further therapy and can be estimated by endoscopic or transabdominal ultrasound. BBS can be complicated by gastrointestinal bleeding, perforation, peritonitis, intra-abdominal and abdominal wall abscesses, or phlegmon, and these complications can lead to fatal outcomes. The most important preventive measure is adequate positioning of the external bolster. A conservative approach should be applied only in patients with high operative risk and dismal prognosis. Choice of the method of release is based on the type of the PEG set and depth of disc migration. A disc retained inside the stomach and completely covered by the overgrowing tissue can be released using some type of endoscopic dissection technique(needle knife, argon plasma coagulation, or papillotome through the cannula). Proper patient selection and dissection of the overgrowing tissue are the major determinants for successful endoscopic therapy. A disc localized out of the stomach(lamina muscularis propria) should be treated by a surgeon.展开更多
Burial dissolution of feldspar and carbonate minerals has been proposed to generate large volumes of secondary pores in subsurface reservoirs. Secondary porosity due to feldspar dissolution is ubiquitous in buried san...Burial dissolution of feldspar and carbonate minerals has been proposed to generate large volumes of secondary pores in subsurface reservoirs. Secondary porosity due to feldspar dissolution is ubiquitous in buried sandstones;however, extensive burial dissolution of carbonate minerals in subsurface sandstones is still debatable. In this paper, we first present four types of typical selective dissolution assemblages of feldspars and carbonate minerals developed in di erent sandstones. Under the constraints of porosity data, water–rock experiments, geochemical calculations of aggressive fluids, diagenetic mass transfer, and a review of publications on mineral dissolution in sandstone reservoirs, we argue that the hypothesis for the creation of significant volumes of secondary porosity by mesodiagenetic carbonate dissolution in subsurface sandstones is in conflict with the limited volume of aggressive fluids in rocks. In addition, no transfer mechanism supports removal of the dissolution products due to the small water volume in the subsurface reservoirs and the low mass concentration gradients in the pore water. Convincing petrographic evidence supports the view that the extensive dissolution of carbonate cements in sandstone rocks is usually associated with a high flux of deep hot fluids provided via fault systems or with meteoric freshwater during the eodiagenesis and telodiagenesis stages. The presumption of extensive mesogenetic dissolution of carbonate cements producing a significant net increase in secondary porosity should be used with careful consideration of the geological background in prediction of sandstone quality.展开更多
In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to ...In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.展开更多
Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination ...Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.展开更多
This paper presents a method for analysis of stress and strain of gas pipelines under the effect of horizontal catastrophic landslides. A soil spring model was used to analyze the nonlinear characteristics concerning ...This paper presents a method for analysis of stress and strain of gas pipelines under the effect of horizontal catastrophic landslides. A soil spring model was used to analyze the nonlinear characteristics concerning the mutual effects between the pipeline and the soil. The Ramberg–Osgood model was used to describe the constitutive relations of pipeline materials. This paper also constructed a finite element analysis model using ABAQUS finite element software and studied the distribution of the maximum stress and strain of the pipeline and the axial stress and strain along the pipeline by referencing some typical accident cases. The calculation results indicated that the maximum stress and strain increased gradually with the displacement of landslide.The limit values of pipeline axial stress strain appeared at the junction of the landslide area and non-landslide area. The stress failure criterion was relatively more conservative than the strain failure criterion. The research results of this paper may be used as a technical reference concerning the design and safety management of large-diameter gas pipelines under the effects of catastrophic landslides.展开更多
By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle ...By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.展开更多
It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly im...It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.展开更多
Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different roc...Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.展开更多
A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We intr...A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We introduce in detail,our methodology of data collection and processing from our experiments.Based on the burying depth of the explosives,the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB soft- ware.From this third degree polynomial,we have derived the optimal burying depth,the critical burying depth and the optimal explosive specific charge of the blasting crater.展开更多
文摘Odor pollution in landfill area has attracted more social attention in China. It is very important to control the generation of odor pollutants in situ. Analyzing odorous materials production form buried waste, simulated columns of different volatile solid (VS) content and different buried period waste were designed. Gas compounds produced from the columns were collected and analyzed by comprehensive two-dimensional gas chromatography (GC × GC) method. It has remarkable relationship between VS content and concentrations of odorous material. When VS content more than 40%, the total amount of odorous compounds increases remarkably. It can be inferred that reduced VS content of original waste may effective decreasing odorous materials production in landfill area. The old rubbish produced more odorous compounds than that of fresh one in simulated columns.
文摘Acorns of Quercus aliena var. acuteserrata Maxim. are often predated by small mammals and birds in natural forests. These animals not only eat the acorns during the acorn ripening season, but also cache and hoard most of the remaining acorns on the forest floor in the soil for their future use. These buried acorns form the main seed resource for regeneration. Burying depth is potentially important for germination and for seedling development. The effects of burying depth on germination and seedling development in relation to acorn size were studied in an experiment, in which acorns were planted at 6 cm-, 12 cm- and 18 cm-depth. The experimental results showed that fewer acorns germinated as burying depth increased. From the deeply buried acorns fewer seedlings emerged at later time than from those acorns buried less deeply. They appeared to have more difficulties to emerge above-ground than die seedlings from shallowly buried acorns. The deeply buried acorns and their seedlings also appeared to be more susceptible to rot. Acorn size did not significantly affect germination and emergence of the seedlings. As early emerged seedlings had longer developmental periods in their first growing season, and therefore grew better than die late emerged seedlings, seedlings from die shallowly buried acorns took the advantage.
基金supported by the National Natural Science Foundation of China(22379010,22109166,22309191)Chinese Academy of Sciences。
文摘CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.
基金National Natural Science Foundation of China (62274094, 62175117)Natural Science Foundation of Jiangsu Higher Education Institutions (22KJB510011)+1 种基金Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2260)Huali Talents Program of Nanjing University of Posts and Telecommunications。
文摘Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells.
基金financially supported by a project of the Ministry of Science and Technology,SINOPEC(No.P13071)a project of the Petroleum Exploration and Production Research Institute,SINOPEC(No.YK514003).
文摘Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.
基金supported by Nanchong Southwest Petroleum University Science and Technology Strategic Cooperation Project(Nos.23XNSYSX0022,23XNSYSX0026)Provincial Science and Technology Plan Project(No.2023ZHCG0020)Southwest Petroleum University Natural Science“Sailing Plan”Project(No.2023QHZ003)。
文摘In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines.
文摘The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid dynamics(CFD)method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment.Based on cloud chart,concentration at the monitoring site and hazard range of lower explosion limit(LEL)and upper explosion limit(UEL),the influences of leakage hole direction and shape,soil property,burial depth,obstacle type on the diffusion law and hazard range are analyzed.Results show that the leakage gas is not radially diffused until it reaches the ground,and the velocity of gas diffusion to the ground and the hazard range decrease as the angle between the leaking direction and the buoyancy direction increases.Triangular and square leak holes have a faster diffusion rate and a wider hazard range than circular.The diffusion rate of leakage gas in soil rises as soil granularity and porosity increase.The time of leakage gas diffusion to the ground increases significantly with the increase of burial depth,and the hazard range reduces as burial depth increases.Boulder-type obstacles will alter the diffusion path of the leakage gas and accelerate the expansion of the hazard distance,while trench-type obstacles will cause the natural gas to accumulate in the trench and form a high concentration region slowing the expansion of the surface gas concentration.
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金supported by National Natural Science Foundation of China(No.41504098 and 41504054)Natural Program on Key Basic Research Project(No.2015CB453002)
文摘The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金Supported by Program from Hubei Education Department(Z200512002)Outstanding Youth Science and Technology Innovation Team Plan Project of Yangtze University~~
文摘[Objective] The aim was to provide theoretical basis for the prevention and control of the invasion of Alternanthera philoxeroides(Mart.)Griseb.[Method] Effects of fragmentation intensity of fresh roots and their burial depth on sprouting and early growth of A.philoxeroides were studied by control test.[Result] More sprouts of A.philoxeroides emerged when the fragmentation intensity of fresh roots was higher,while if the fragmentation intensity of fresh roots was lower,the early growth of A.philoxeroides was more rapid.The soil buried depth had significant effect on fresh root sprouts' emergence,but once fresh root sprouts could reach the soil surface and were given enough growth time,even if the fresh roots were buried in different depths,soil buried depth had no significant effect on its young plant growth.[Conclusion] If different fragmentation intensities of fresh roots present,there is a kind of trade-off strategy between root sprouts' emergence and plant' early growth,by which A.philoxeroides can invade new habitat successfully.To control the invasion of A.philoxeroides,it is critical to prevent its fresh root sprouts from emerging to soil surface,that is,to bury the fresh roots at a further soil depth.
基金Supported by Project PRVOUK P37-08 from Charles University PragueCzech Republic
文摘Percutaneous endoscopic gastrostomy(PEG) is a widely used method of nutrition delivery for patients with longterm insufficiency of oral intake. The PEG complication rate varies from 0.4% to 22.5% of cases, with minor complications being three times more frequent. Buried bumper syndrome(BBS) is a severe complication of this method, in which the internal fixation device migrates alongside the tract of the stoma outside the stomach. Excessive compression of tissue between the external and internal fixation device of the gastrostomy tube is considered the main etiological factor leading to BBS. Incidence of BBS is estimated at around 1%(0.3%-2.4%). Inability to insert, loss of patency and leakage around the PEG tube are considered to be a typical symptomatic triad. Gastroscopy is indicated in all cases in which BBS is suspected. The depth of disc migration in relation to the lamina muscularis propria of the stomach is critical for further therapy and can be estimated by endoscopic or transabdominal ultrasound. BBS can be complicated by gastrointestinal bleeding, perforation, peritonitis, intra-abdominal and abdominal wall abscesses, or phlegmon, and these complications can lead to fatal outcomes. The most important preventive measure is adequate positioning of the external bolster. A conservative approach should be applied only in patients with high operative risk and dismal prognosis. Choice of the method of release is based on the type of the PEG set and depth of disc migration. A disc retained inside the stomach and completely covered by the overgrowing tissue can be released using some type of endoscopic dissection technique(needle knife, argon plasma coagulation, or papillotome through the cannula). Proper patient selection and dissection of the overgrowing tissue are the major determinants for successful endoscopic therapy. A disc localized out of the stomach(lamina muscularis propria) should be treated by a surgeon.
基金funded by the Natural Science Foundation of China Project(Nos.41602138,41872140,41911530189)the National Science and Technology Special Grant(No.2016ZX05006-007+2 种基金No.2016ZX05006-003)the Fundamental Research Funds for the Central Universities(18CX07007A)the State Key Laboratory of Organic Geochemistry,GIGCAS(No.SKLOG-201709)
文摘Burial dissolution of feldspar and carbonate minerals has been proposed to generate large volumes of secondary pores in subsurface reservoirs. Secondary porosity due to feldspar dissolution is ubiquitous in buried sandstones;however, extensive burial dissolution of carbonate minerals in subsurface sandstones is still debatable. In this paper, we first present four types of typical selective dissolution assemblages of feldspars and carbonate minerals developed in di erent sandstones. Under the constraints of porosity data, water–rock experiments, geochemical calculations of aggressive fluids, diagenetic mass transfer, and a review of publications on mineral dissolution in sandstone reservoirs, we argue that the hypothesis for the creation of significant volumes of secondary porosity by mesodiagenetic carbonate dissolution in subsurface sandstones is in conflict with the limited volume of aggressive fluids in rocks. In addition, no transfer mechanism supports removal of the dissolution products due to the small water volume in the subsurface reservoirs and the low mass concentration gradients in the pore water. Convincing petrographic evidence supports the view that the extensive dissolution of carbonate cements in sandstone rocks is usually associated with a high flux of deep hot fluids provided via fault systems or with meteoric freshwater during the eodiagenesis and telodiagenesis stages. The presumption of extensive mesogenetic dissolution of carbonate cements producing a significant net increase in secondary porosity should be used with careful consideration of the geological background in prediction of sandstone quality.
基金Project(51021004) supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(40776055) supported by the National Natural Science Foundation of china+1 种基金Project(1002) supported by State Key Laboratory of Ocean Engineering Foundation, ChinaProject(NCET 11 0370) supported by the Program for New Century Excellent Talents in Universities of China
文摘In-service hydrocarbons must be transported at high temperature and high pressure to ease the flow and prevent the solidification of the wax fraction. The pipeline containing hot oil will expand longitudinally due to the rise in temperature. If such expansion is resisted, for example by frictional effects over a kilometer or so of pipeline, compressive axial stress will be built up in the pipe-wall. The compressive forces are often so large that they induce vertical buckling of buffed pipelines, which can jeopardize the structural integrity of the pipeline. A typical initial imperfection named continuous support mode of submarine pipeline was studied. Based on this type of initial imperfection, the analytical solution of vertical thermal buckling was introduced and an elastic-plasticity finite element analysis (FEA) was developed. Both the analytical and the finite element methodology were applied to analyze a practice in Bohai Gulf, China. The analyzing results show that upheaval buckling is most likely to build up from the initial imperfection of the pipeline and the buckling temperature depends on the amplitude of initial imperfection. With the same amplitude of initial imperfection, the triggering temperature difference of upheaval buckling increases with covered depth of the pipeline, the soil strength and the friction between the pipeline and subsoil.
文摘Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.
基金funded by the National Science and Technology Support Program (2015BAK16B02 and 2015BAK16B01)the Fundamental Research Funds of China Academy of Safety Science and Technology
文摘This paper presents a method for analysis of stress and strain of gas pipelines under the effect of horizontal catastrophic landslides. A soil spring model was used to analyze the nonlinear characteristics concerning the mutual effects between the pipeline and the soil. The Ramberg–Osgood model was used to describe the constitutive relations of pipeline materials. This paper also constructed a finite element analysis model using ABAQUS finite element software and studied the distribution of the maximum stress and strain of the pipeline and the axial stress and strain along the pipeline by referencing some typical accident cases. The calculation results indicated that the maximum stress and strain increased gradually with the displacement of landslide.The limit values of pipeline axial stress strain appeared at the junction of the landslide area and non-landslide area. The stress failure criterion was relatively more conservative than the strain failure criterion. The research results of this paper may be used as a technical reference concerning the design and safety management of large-diameter gas pipelines under the effects of catastrophic landslides.
基金Project(2014M560652)supported by China Postdoctoral Science FoundationProjects(2011CB013802,2013CB036004)supported by the National Basic Research Program of China
文摘By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.
基金Projects(51974225,51874229,51674188,51904224,51904225,51504182) supported by the National Natural Science Foundation of ChinaProjects(2018JM5161,2018JQ5183,2015JQ5187) supported by the Natural Science Basic Research Plan of Shaanxi,China
文摘It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid.
基金Projects(51878567,51878568,51578458)supported by the National Natural Science Foundation of ChinaProjects(2017G007-F,2017G007-H)supported by China Railway Science and Technology Research and Development Plan。
文摘Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.
文摘A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carried in the Yunfu Troilite Mine,according to the Livingston blasting crater theory.We introduce in detail,our methodology of data collection and processing from our experiments.Based on the burying depth of the explosives,the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB soft- ware.From this third degree polynomial,we have derived the optimal burying depth,the critical burying depth and the optimal explosive specific charge of the blasting crater.