I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations an...A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations and assists them in formulating appropriate strategies without any hysteresis.This research identifies the essential components of AI applications under an internal audit framework and provides an appropriate direction of strategies,which relate to setting up a priority on alternatives with multiple dimensions/criteria involvement that need to further consider the interconnected and intertwined relationships among them so as to reach a suitable judgment.To obtain this goal and inspired by a model ensemble,we introduce an innovative fuzzy multiple rule-based decision making framework that integrates soft computing,fuzzy set theory,and a multi-attribute decision making algorithm.The results display that the order of priority in improvement—(A)AI application strategy,(B)AI governance,(D)the human factor,and(C)data infrastructure and data quality—is based on the magnitude of their impact.This dynamically enhances the implementation of an AI-driven internal audit framework as well as responds to the strong rise of the big data environment.Highlights Artificial intelligence(AI)promotes the sustainability development of audit tasks.A fuzzy MRDM model extracts key factors from large amounts of data.Fuzzy decision-making trial and evaluation laboratory analysis accounts for dependence and feedback among factors.An effective framework of AI-driven business audit is proposed in which“AI cognition of senior executives”is the most important criterion.展开更多
Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence t...Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.展开更多
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi...Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.展开更多
Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision S...Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision Support Systems have received a great deal of attention recently.Bibliometric analysis can offer an objective,systematic,and comprehensive analysis of a specific field with a vast background.However,no bibliometric analysis has investigated AI-enabled clinical decision support systems research in nursing.The purpose of research to determine the characteristics of articles about the global performance and development of AI-enabled clinical decision support systems research in nursing.Methods:In this study,the bibliometric approach was used to estimate the searched data on clinical decision support systems research in nursing from 2009 to 2022,and we also utilized CiteSpace and VOSviewer software to build visualizing maps to assess the contribution of different journals,authors,et al.,as well as to identify research hot spots and promising future trends in this research field.Result:From 2009 to 2022,a total of 2,159 publications were retrieved.The number of publications and citations on AI-enabled clinical decision support systems research in nursing has increased obvious ly in recent years.However,they are understudied in the field of nursing and there is a compelling need to develop more high-quality research.Conclusion:AI-Enabled Nursing Decision Support System use in clinical practice is still in its early stages.These analyses and results hope to provide useful information and references for future research directions for researchers and nursing practitioners who use AI-enabled clinical decision support systems.展开更多
Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, C...An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.展开更多
Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BL...Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.展开更多
Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented info...Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented information retrieval DSS can meet the needs of enterprise’s topmanagement effectively in comparison with other information retrieval functions,in accordancewith the features of supporting information for decision.An architecture of this system is presented,which dissolves a problem put forward or recognized by the user into the problem recognized by thecomputer,forming retrieval tactics and searching the data the user needs.Designed and developedaccording to the architecture of this system,a prototype system is introduced,which is CF Econom-ic Environment Information Retrieval DSS.展开更多
This paper focuses on land resource consumption due to urban sprawl. Special attention is given to shrinking regions, characterized by economic decline, demographic change, and high unemployment rates. In these region...This paper focuses on land resource consumption due to urban sprawl. Special attention is given to shrinking regions, characterized by economic decline, demographic change, and high unemployment rates. In these regions, vast terrain is abandoned and falls derelict. A geographic information system (GIS) based multi-criteria decision tool is introduced to determine the reuse potential of derelict terrain, to investigate the possible reuse options (housing, business and trade, industry, services, tourism and leisure, and re-greening), and to visualize the best reuse options for groups of sites on a regional scale. Achievement functions for attribute data are presented to assess the best reuse options based on a multi-attribute technique. The assessment tool developed is applied to a model region in Germany. The application of the assessment tool enables communities to become aware of their resources of derelict land and their reuse potential.展开更多
In order to meet the requirement of separating power plants from power network and that of the competition based power transaction in power market, the pricing decision support system for generation companies (GCPDSS)...In order to meet the requirement of separating power plants from power network and that of the competition based power transaction in power market, the pricing decision support system for generation companies (GCPDSS) is built in electricity market. This paper introduces the conception of intelligent decision support system (IDSS) and puts emphasis on the systematical structural framework, work process, design principal, and fundamental function of GCPDSS. The system has the module to analyze the cost, to forecast the demand of power, to construct the pricing strategies, to manage the pricing risk, and to dispatch giving the pricing strategies. The case study illustrates that the friendly window-based user interface of the system enables the user to take full advantage of the capabilities of the system in order to make effective real-time decisions.展开更多
In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integr...In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.展开更多
Research into medical artificial intelligence(AI)has made significant advances in recent years,including surgical applications.This scoping review investigated AI-based decision support systems targeted at the intraop...Research into medical artificial intelligence(AI)has made significant advances in recent years,including surgical applications.This scoping review investigated AI-based decision support systems targeted at the intraoperative phase of surgery and found a wide range of technological approaches applied across several surgical specialties.Within the twenty-one(n=21)included papers,three main categories of motivations were identified for developing such technologies:(1)augmenting the information available to surgeons,(2)accelerating intraoperative pathology,and(3)recommending surgical steps.While many of the proposals hold promise for improving patient outcomes,important methodological shortcomings were observed in most of the reviewed papers that made it difficult to assess the clinical significance of the reported performance statistics.Despite limitations,the current state of this field suggests that a number of opportunities exist for future researchers and clinicians to work on AI for surgical decision support with exciting implications for improving surgical care.展开更多
This paper describes the required functions and development tactics for the SXSES-DSS, and briefs the general design of the system and a developed prototype based on the design. It is pointed out that the system is an...This paper describes the required functions and development tactics for the SXSES-DSS, and briefs the general design of the system and a developed prototype based on the design. It is pointed out that the system is an intelligent, distributed, integrated group DSS based on model base, knowledge base, algorithm base, graph base and text base etc., which has a two-layer coordination structure.展开更多
Chronic obstructive pulmonary disease(COPD)is a serious chronic respiratory disease.Improving the ability to identify patients with COPD in primary medical institutions is important to prevent and treat the disease.Wi...Chronic obstructive pulmonary disease(COPD)is a serious chronic respiratory disease.Improving the ability to identify patients with COPD in primary medical institutions is important to prevent and treat the disease.With the continuous development of medical digitization,the application of big data informatization in the medical and health fields has become possible.Recently,applying innovative technologies such as big data analysis,machine learning,and artificial intelligence-assisted decision-making in the medical field has become an interdisciplinary research hotspot.Based on the identification and diagnosis of COPD in the high-risk population,this study proposes a convenient and effective clinical decision support system to help identify patients with COPD in primary health institutions.The results of the preliminary experiments show that the proposed method is convenient and effective compared with the existing methods.展开更多
The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the ea...The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the east of the DRC. The study was based on a mixed perspective consisting of objective analysis of quantitative data and interpretative analysis of qualitative data. The results showed that business and strategic intelligence policies have not been established at either company or state level, as this is an area of activity that is not known to the players in companies and public departments, and there are no units or offices in their organizational structures responsible for managing strategic information for competitiveness on the international market. In addition, there is a real need to establish strategic information management units within companies, upstream, and to set up a national strategic information management department or agency to help local companies compete in the marketplace, downstream. This reflects the importance and timeliness of building business and strategic intelligence policies to ensure economic progress and development in the eastern DRC. Business and strategic intelligence provides companies with an appropriate tool for researching, collecting, processing and disseminating information useful for decision-making among stakeholders, in order to cope with a crisis or competitive situation. The study suggests a number of key recommendations based on its findings. To the government, it is recommended to establish the national policy of business and strategic intelligence by setting up a national agency of strategic intelligence in favor of local companies;and to companies to establish business intelligence units in their organizational structures in favor of stakeholders to foster advantageous decision-making in the competitive market and achieve progress. Finally, the study suggests that studies be carried out to fully understand the opportunities and impact of business and strategic intelligence in African countries, particularly in the DRC.展开更多
The objective of this work is to define a decision support system over SOX (Sarbanes-Oxley Act) compatibility and quality of the Purchase Orders Creation Process based on Artificial Intelligence and Theory of Argument...The objective of this work is to define a decision support system over SOX (Sarbanes-Oxley Act) compatibility and quality of the Purchase Orders Creation Process based on Artificial Intelligence and Theory of Argumentation knowledge and techniques. This proposed model directly contributes to both scientific research artificial intelligent area and business practices. From business perspective it empowers the use of artificial intelligent models and techniques to drive decision making processes over financial statements. From scientific and research area the impact is based on the combination of 1) an Information Seeking Dialog Protocol in which a requestor agent inquires the business case, 2) a Facts Valuation based Protocol in which the previously gathered facts are analyzed, 3) the already incorporated initial knowledge of a human expert via initial beliefs, 4) the Intra-Agent Decision Making Protocol based on deductive argumentation and 5) the semi automated Dynamic Knowledge Learning Protocol. Last but not least the suggested way of integration of this proposed model in a higher level multiagent intelligent system in which a Joint Deliberative Dialog Protocol and an Inter-Agent Decision Deductive Argumentation Making Protocol are described.展开更多
The wide use and abuse of antibiotics could make antimicrobial resistance(AMR)an increasingly serious issue that threatens global health and imposes an enormous burden on society and the economy.To avoid the crisis of...The wide use and abuse of antibiotics could make antimicrobial resistance(AMR)an increasingly serious issue that threatens global health and imposes an enormous burden on society and the economy.To avoid the crisis of AMR,we have to fundamentally change our approach.Artificial intelligence(AI)represents a new paradigm to combat AMR.Thus,various AI approaches to this problem have sprung up,some of which may be considered successful cases of domain-specific AI applications in AMR.However,to the best of our knowledge,there is no systematic review illustrating the use of these AI-based applications for AMR.Therefore,this review briefly introduces how to employ AI technology against AMR by using the predictive AMR model,the rational use of antibiotics,antimicrobial peptides(AMPs)and antibiotic combinations,as well as future research directions.展开更多
BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in...BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in establishing hallux valgus severity for clinical decision-making.AIM To investigate the accuracy of automated measurements of angles of hallux valgus from radiographs for further integration with the preoperative planning process.METHODS The data comprises 265 consecutive digital anteroposterior weightbearing foot radiographs.181 radiographs were utilized for training(161)and validating(20)a U-Net neural network to achieve a mean Sørensen–Dice index>97%on bone segmentation.84 test radiographs were used for manual(computer assisted)and automated measurements of hallux valgus severity determined by hallux valgus(HVA)and intermetatarsal angles(IMA).The reliability of manual and computerbased measurements was calculated using the interclass correlation coefficient(ICC)and standard error of measurement(SEM).Inter-and intraobserver reliability coefficients were also compared.An operative treatment recommendation was then applied to compare results between automated and manual angle measurements.RESULTS Very high reliability was achieved for HVA and IMA between the manual measurements of three independent clinicians.For HVA,the ICC between manual measurements was 0.96-0.99.For IMA,ICC was 0.78-0.95.Comparing manual against automated computer measurement,the reliability was high as well.For HVA,absolute agreement ICC and consistency ICC were 0.97,and SEM was 0.32.For IMA,absolute agreement ICC was 0.75,consistency ICC was 0.89,and SEM was 0.21.Additionally,a strong correlation(0.80)was observed between our approach and traditional clinical adjudication for preoperative planning of hallux valgus,according to an operative treatment algorithm proposed by EFORT.CONCLUSION The proposed automated,artificial intelligence assisted determination of hallux valgus angles based on deep learning holds great potential as an accurate and efficient tool,with comparable accuracy to manual measurements by expert clinicians.Our approach can be effectively implemented in clinical practice to determine the angles of hallux valgus from radiographs,classify the deformity severity,streamline preoperative decision-making prior to corrective surgery.展开更多
Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber r...Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.展开更多
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
基金supporting this work under Contracts No.MOST 110-2410-H-034-011 and MOST 110-2410-H-034-009,and 13th five-year plan of philosophy and social sciences of Guangdong Province,under Grants No.GD18CLJ02 and Department of education of Guangdong Province,China,No.2020WTSCX139.
文摘A broad range of companies around the world has welcomed artificial intelligence(AI)technology in daily practices because it provides decision-makers with comprehensive and intuitive messages about their operations and assists them in formulating appropriate strategies without any hysteresis.This research identifies the essential components of AI applications under an internal audit framework and provides an appropriate direction of strategies,which relate to setting up a priority on alternatives with multiple dimensions/criteria involvement that need to further consider the interconnected and intertwined relationships among them so as to reach a suitable judgment.To obtain this goal and inspired by a model ensemble,we introduce an innovative fuzzy multiple rule-based decision making framework that integrates soft computing,fuzzy set theory,and a multi-attribute decision making algorithm.The results display that the order of priority in improvement—(A)AI application strategy,(B)AI governance,(D)the human factor,and(C)data infrastructure and data quality—is based on the magnitude of their impact.This dynamically enhances the implementation of an AI-driven internal audit framework as well as responds to the strong rise of the big data environment.Highlights Artificial intelligence(AI)promotes the sustainability development of audit tasks.A fuzzy MRDM model extracts key factors from large amounts of data.Fuzzy decision-making trial and evaluation laboratory analysis accounts for dependence and feedback among factors.An effective framework of AI-driven business audit is proposed in which“AI cognition of senior executives”is the most important criterion.
文摘Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.
基金The authors would like to confirm that this research work was funded by Institutional Fund Projects under Grant No.(IFPIP:646-829-1443)。
文摘Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.
基金Lan-Fang Qin was supported by National Innovation and Entrepreneurship Training Program for College Students(2022KYCX69)Rui Wang was supported by the Nursing Subject(Zhejiang Province"13th Five-Year Plan"Characteristic Specialty Construction Project)under Grant(JY30001)Chong-Bin Liu supported by the grants from National Natural Science Foundation of Zhejiang Province,No.LY21H260005 and No.2017290-40.
文摘Objective:Artificial intelligence(AI)has a big impact on healthcare now and in the future.Nurses play an important role in the medical field and will benefit greatly from this technology.AI-Enabled Clinical Decision Support Systems have received a great deal of attention recently.Bibliometric analysis can offer an objective,systematic,and comprehensive analysis of a specific field with a vast background.However,no bibliometric analysis has investigated AI-enabled clinical decision support systems research in nursing.The purpose of research to determine the characteristics of articles about the global performance and development of AI-enabled clinical decision support systems research in nursing.Methods:In this study,the bibliometric approach was used to estimate the searched data on clinical decision support systems research in nursing from 2009 to 2022,and we also utilized CiteSpace and VOSviewer software to build visualizing maps to assess the contribution of different journals,authors,et al.,as well as to identify research hot spots and promising future trends in this research field.Result:From 2009 to 2022,a total of 2,159 publications were retrieved.The number of publications and citations on AI-enabled clinical decision support systems research in nursing has increased obvious ly in recent years.However,they are understudied in the field of nursing and there is a compelling need to develop more high-quality research.Conclusion:AI-Enabled Nursing Decision Support System use in clinical practice is still in its early stages.These analyses and results hope to provide useful information and references for future research directions for researchers and nursing practitioners who use AI-enabled clinical decision support systems.
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
文摘An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.
基金the National Natural Science Fund of China(Approved No.79779986)
文摘Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.
文摘Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented information retrieval DSS can meet the needs of enterprise’s topmanagement effectively in comparison with other information retrieval functions,in accordancewith the features of supporting information for decision.An architecture of this system is presented,which dissolves a problem put forward or recognized by the user into the problem recognized by thecomputer,forming retrieval tactics and searching the data the user needs.Designed and developedaccording to the architecture of this system,a prototype system is introduced,which is CF Econom-ic Environment Information Retrieval DSS.
基金supported by the German Federal Ministry of Education and Research (BMBF Berlin)the Federal Office of Building and Regional Planning (BBR Bonn)the State of Thuringia and the State Development Corporation (LEG) Thuringia
文摘This paper focuses on land resource consumption due to urban sprawl. Special attention is given to shrinking regions, characterized by economic decline, demographic change, and high unemployment rates. In these regions, vast terrain is abandoned and falls derelict. A geographic information system (GIS) based multi-criteria decision tool is introduced to determine the reuse potential of derelict terrain, to investigate the possible reuse options (housing, business and trade, industry, services, tourism and leisure, and re-greening), and to visualize the best reuse options for groups of sites on a regional scale. Achievement functions for attribute data are presented to assess the best reuse options based on a multi-attribute technique. The assessment tool developed is applied to a model region in Germany. The application of the assessment tool enables communities to become aware of their resources of derelict land and their reuse potential.
基金NationalNaturalScienceFoundation (No .60 2 740 48) HebeiProvinceNaturalScienceFoundation (No .2 0 0 1ABB0 47)
文摘In order to meet the requirement of separating power plants from power network and that of the competition based power transaction in power market, the pricing decision support system for generation companies (GCPDSS) is built in electricity market. This paper introduces the conception of intelligent decision support system (IDSS) and puts emphasis on the systematical structural framework, work process, design principal, and fundamental function of GCPDSS. The system has the module to analyze the cost, to forecast the demand of power, to construct the pricing strategies, to manage the pricing risk, and to dispatch giving the pricing strategies. The case study illustrates that the friendly window-based user interface of the system enables the user to take full advantage of the capabilities of the system in order to make effective real-time decisions.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/147/42),www.kku.edu.sa.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.
文摘In present digital era,data science techniques exploit artificial intelligence(AI)techniques who start and run small and medium-sized enterprises(SMEs)to have an impact and develop their businesses.Data science integrates the conventions of econometrics with the technological elements of data science.It make use of machine learning(ML),predictive and prescriptive analytics to effectively understand financial data and solve related problems.Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations.At the same time,it is needed to develop an effective tool which can assist small to medium sized enterprises to forecast business failure as well as financial crisis.AI becomes a familiar tool for several businesses due to the fact that it concentrates on the design of intelligent decision making tools to solve particular real time problems.With this motivation,this paper presents a new AI based optimal functional link neural network(FLNN)based financial crisis prediction(FCP)model forSMEs.The proposed model involves preprocessing,feature selection,classification,and parameter tuning.At the initial stage,the financial data of the enterprises are collected and are preprocessed to enhance the quality of the data.Besides,a novel chaotic grasshopper optimization algorithm(CGOA)based feature selection technique is applied for the optimal selection of features.Moreover,functional link neural network(FLNN)model is employed for the classification of the feature reduced data.Finally,the efficiency of theFLNNmodel can be improvised by the use of cat swarm optimizer(CSO)algorithm.A detailed experimental validation process takes place on Polish dataset to ensure the performance of the presented model.The experimental studies demonstrated that the CGOA-FLNN-CSO model has accomplished maximum prediction accuracy of 98.830%,92.100%,and 95.220%on the applied Polish dataset Year I-III respectively.
文摘Research into medical artificial intelligence(AI)has made significant advances in recent years,including surgical applications.This scoping review investigated AI-based decision support systems targeted at the intraoperative phase of surgery and found a wide range of technological approaches applied across several surgical specialties.Within the twenty-one(n=21)included papers,three main categories of motivations were identified for developing such technologies:(1)augmenting the information available to surgeons,(2)accelerating intraoperative pathology,and(3)recommending surgical steps.While many of the proposals hold promise for improving patient outcomes,important methodological shortcomings were observed in most of the reviewed papers that made it difficult to assess the clinical significance of the reported performance statistics.Despite limitations,the current state of this field suggests that a number of opportunities exist for future researchers and clinicians to work on AI for surgical decision support with exciting implications for improving surgical care.
文摘This paper describes the required functions and development tactics for the SXSES-DSS, and briefs the general design of the system and a developed prototype based on the design. It is pointed out that the system is an intelligent, distributed, integrated group DSS based on model base, knowledge base, algorithm base, graph base and text base etc., which has a two-layer coordination structure.
基金This work was supported by the Major Research Program of the National Natural Science Foundation of China(No.91843302).
文摘Chronic obstructive pulmonary disease(COPD)is a serious chronic respiratory disease.Improving the ability to identify patients with COPD in primary medical institutions is important to prevent and treat the disease.With the continuous development of medical digitization,the application of big data informatization in the medical and health fields has become possible.Recently,applying innovative technologies such as big data analysis,machine learning,and artificial intelligence-assisted decision-making in the medical field has become an interdisciplinary research hotspot.Based on the identification and diagnosis of COPD in the high-risk population,this study proposes a convenient and effective clinical decision support system to help identify patients with COPD in primary health institutions.The results of the preliminary experiments show that the proposed method is convenient and effective compared with the existing methods.
文摘The aim of this study was to verify the existence of business and strategic intelligence policies at the level of Congolese companies and at the state level, likely to foster progress and healthy development in the east of the DRC. The study was based on a mixed perspective consisting of objective analysis of quantitative data and interpretative analysis of qualitative data. The results showed that business and strategic intelligence policies have not been established at either company or state level, as this is an area of activity that is not known to the players in companies and public departments, and there are no units or offices in their organizational structures responsible for managing strategic information for competitiveness on the international market. In addition, there is a real need to establish strategic information management units within companies, upstream, and to set up a national strategic information management department or agency to help local companies compete in the marketplace, downstream. This reflects the importance and timeliness of building business and strategic intelligence policies to ensure economic progress and development in the eastern DRC. Business and strategic intelligence provides companies with an appropriate tool for researching, collecting, processing and disseminating information useful for decision-making among stakeholders, in order to cope with a crisis or competitive situation. The study suggests a number of key recommendations based on its findings. To the government, it is recommended to establish the national policy of business and strategic intelligence by setting up a national agency of strategic intelligence in favor of local companies;and to companies to establish business intelligence units in their organizational structures in favor of stakeholders to foster advantageous decision-making in the competitive market and achieve progress. Finally, the study suggests that studies be carried out to fully understand the opportunities and impact of business and strategic intelligence in African countries, particularly in the DRC.
文摘The objective of this work is to define a decision support system over SOX (Sarbanes-Oxley Act) compatibility and quality of the Purchase Orders Creation Process based on Artificial Intelligence and Theory of Argumentation knowledge and techniques. This proposed model directly contributes to both scientific research artificial intelligent area and business practices. From business perspective it empowers the use of artificial intelligent models and techniques to drive decision making processes over financial statements. From scientific and research area the impact is based on the combination of 1) an Information Seeking Dialog Protocol in which a requestor agent inquires the business case, 2) a Facts Valuation based Protocol in which the previously gathered facts are analyzed, 3) the already incorporated initial knowledge of a human expert via initial beliefs, 4) the Intra-Agent Decision Making Protocol based on deductive argumentation and 5) the semi automated Dynamic Knowledge Learning Protocol. Last but not least the suggested way of integration of this proposed model in a higher level multiagent intelligent system in which a Joint Deliberative Dialog Protocol and an Inter-Agent Decision Deductive Argumentation Making Protocol are described.
基金funding support from National Science and Technology Major Project[2018ZX10201002].
文摘The wide use and abuse of antibiotics could make antimicrobial resistance(AMR)an increasingly serious issue that threatens global health and imposes an enormous burden on society and the economy.To avoid the crisis of AMR,we have to fundamentally change our approach.Artificial intelligence(AI)represents a new paradigm to combat AMR.Thus,various AI approaches to this problem have sprung up,some of which may be considered successful cases of domain-specific AI applications in AMR.However,to the best of our knowledge,there is no systematic review illustrating the use of these AI-based applications for AMR.Therefore,this review briefly introduces how to employ AI technology against AMR by using the predictive AMR model,the rational use of antibiotics,antimicrobial peptides(AMPs)and antibiotic combinations,as well as future research directions.
文摘BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in establishing hallux valgus severity for clinical decision-making.AIM To investigate the accuracy of automated measurements of angles of hallux valgus from radiographs for further integration with the preoperative planning process.METHODS The data comprises 265 consecutive digital anteroposterior weightbearing foot radiographs.181 radiographs were utilized for training(161)and validating(20)a U-Net neural network to achieve a mean Sørensen–Dice index>97%on bone segmentation.84 test radiographs were used for manual(computer assisted)and automated measurements of hallux valgus severity determined by hallux valgus(HVA)and intermetatarsal angles(IMA).The reliability of manual and computerbased measurements was calculated using the interclass correlation coefficient(ICC)and standard error of measurement(SEM).Inter-and intraobserver reliability coefficients were also compared.An operative treatment recommendation was then applied to compare results between automated and manual angle measurements.RESULTS Very high reliability was achieved for HVA and IMA between the manual measurements of three independent clinicians.For HVA,the ICC between manual measurements was 0.96-0.99.For IMA,ICC was 0.78-0.95.Comparing manual against automated computer measurement,the reliability was high as well.For HVA,absolute agreement ICC and consistency ICC were 0.97,and SEM was 0.32.For IMA,absolute agreement ICC was 0.75,consistency ICC was 0.89,and SEM was 0.21.Additionally,a strong correlation(0.80)was observed between our approach and traditional clinical adjudication for preoperative planning of hallux valgus,according to an operative treatment algorithm proposed by EFORT.CONCLUSION The proposed automated,artificial intelligence assisted determination of hallux valgus angles based on deep learning holds great potential as an accurate and efficient tool,with comparable accuracy to manual measurements by expert clinicians.Our approach can be effectively implemented in clinical practice to determine the angles of hallux valgus from radiographs,classify the deformity severity,streamline preoperative decision-making prior to corrective surgery.
基金This work was funded by the UK EPSRC[grant number:EP/S035362/1,EP/N023013/1,EP/N02334X/1]and by the Cisco Research Centre[grant number 1525381].
文摘Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.