The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost a...The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water(scH_(2)O) gasification enable sustainable production of molecular hydrogen(H_(2)).We review the recent advances in engineering Ralsto-nia eutropha,the representative species of“Knallgas”bacteria,for utilizing CO_(2) and H_(2) to autotrophically produce 2,3-butanediol(2,3-BDO).This assessment is focused on state-of-the-art approaches for splitting H_(2) to supply en-ergy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO_(2) fixation.Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO_(2) and H_(2)-utilizing microorganisms,exemplified by Zymomonas mobilis.展开更多
基金This work was authored by Alliance for Sustainable Energy,LLC,the Manager and Operator of the National Renewable Energy Laboratory for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308Funding provided by U.S.Department of Energy Office of Energy Efficiency and Renewable Energy,Bioenergy Technologies Of-fice(BETO)Funding for YJB was provided by the Center for Bioenergy Innovation(CBI),a U.S.Department of Energy Bioenergy Research Cen-ter supported by the Office of Biological and Environmental Research in the DOE Office of Science.
文摘The decarbonization of the chemical industry and a shift toward circular economies because of high global CO_(2) emissions make CO_(2) an attractive feedstock for manufacturing chemicals.Moreover,H_(2) is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water(scH_(2)O) gasification enable sustainable production of molecular hydrogen(H_(2)).We review the recent advances in engineering Ralsto-nia eutropha,the representative species of“Knallgas”bacteria,for utilizing CO_(2) and H_(2) to autotrophically produce 2,3-butanediol(2,3-BDO).This assessment is focused on state-of-the-art approaches for splitting H_(2) to supply en-ergy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO_(2) fixation.Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO_(2) and H_(2)-utilizing microorganisms,exemplified by Zymomonas mobilis.