Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlay...Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.展开更多
A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixin...A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.展开更多
We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal ...We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide / butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide / IIR composite.展开更多
基金supported by the National Natural Science Foun-dation of China(51873103)Capacity Building Project of Some Local Colleges and Universities in Shanghai(17030501200)+2 种基金Scien-tific and Technological Support Projects in the Field of Biomedicine(19441901700)Talent Program of Shanghai University of Engi-neering Science(2017RC422017)First-rate Discipline Con-struction of Applied Chemistry(2018xk-B-06).
文摘Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.
基金Supported by the National Natural Science Foundation of China(21176014,20990221,21121064)the Science-Technology Project for Supervisors of Excellent Doctor Degree Thesis of Beijing(20111001001)
文摘A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.
基金Founded by the 863 High-Technology Research and Development Program of China(No.2011AA060104)
文摘We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide / butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide / IIR composite.