In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption ...In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption equilibrium, kinetics and thermodynamics studies of BPB adsorption were carried out. During batch adsorption runs, the effects of factors, such as contact time (0 - 300 min), CBAC dose (200 - 800 mg), pH (3 - 11) and solution temperatures (303 - 348 K) were investigated on BPB removal. Experimental results reveal that the BPB removal efficiency on CBAC is higher than 97% under acidic and neutral conditions. Equilibrium data were fitted by Langmuir, Freundlich and Temkin isotherm models with correlation coefficient more than 0.9. The pseudo-second order kinetic model was observed to fit well the adsorption data. Thermodynamic analysis shows positive values of standard Gibb’s free energy, suggesting the non-spontaneity of the process. The changes in enthalpy (0.2 J.mol-1) and entropy (19 J.mol-1) were found to be endothermic with an increase of randomness. The high adsorption efficiency of the synthesized coconut biochar materials with low cost indicates that it may be a promising adsorbent for removing organic compounds.展开更多
文摘In this work, low cost coconut biochar based activated carbon (CBAC) was used for adsorption of Butylparaben (BPB) from aqueous medium. The prepared CBAC was characterized using BET, Boehm analysis and the adsorption equilibrium, kinetics and thermodynamics studies of BPB adsorption were carried out. During batch adsorption runs, the effects of factors, such as contact time (0 - 300 min), CBAC dose (200 - 800 mg), pH (3 - 11) and solution temperatures (303 - 348 K) were investigated on BPB removal. Experimental results reveal that the BPB removal efficiency on CBAC is higher than 97% under acidic and neutral conditions. Equilibrium data were fitted by Langmuir, Freundlich and Temkin isotherm models with correlation coefficient more than 0.9. The pseudo-second order kinetic model was observed to fit well the adsorption data. Thermodynamic analysis shows positive values of standard Gibb’s free energy, suggesting the non-spontaneity of the process. The changes in enthalpy (0.2 J.mol-1) and entropy (19 J.mol-1) were found to be endothermic with an increase of randomness. The high adsorption efficiency of the synthesized coconut biochar materials with low cost indicates that it may be a promising adsorbent for removing organic compounds.