Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homog...Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ) , which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0% to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.展开更多
A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of butyraldehyde glycol acetal catalyzed by H3P...A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of butyraldehyde glycol acetal catalyzed by H3PW12O40/MCM-48 was studied with butyraldehyde and glycol as reactants. H3PW12O40/MCM-48 was an excellent catalyst for the synthesizing butyraldehyde glycol acetal and Keggin structure of H3PW12O40 kept unchanged after being impregnated on surface of the molecular sieve support. Effects of n(butyraldehyde): n(glycol), catalyst dosage, cyclohexane(water-stripped reagent) and reaction time on yields of the product were investigated. The optimum conditions had been found, that was, molar ratio of butyraldehyde to glycol was 1: 1.6, mass ratio of catalyst used to the reactants was 0.25% and reaction time was 75 min. Under these conditions, the yield of butyraldehyde glycol acetal can reach 79.74%.展开更多
The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in ...The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in the formation of hierarchical porous structures. The thickness of the coating shell can be controlled by changing the adding amount of TEOS. The core-shell composites with the thickness of 35 nm possess high surface areas(about 528 m2·g-1), large pores(about 3.5 nm in diameter) on the silica shells. The composite molecular sieves display higher adsorption capacity for benzene(140.2 mg·g-1) and butyraldehyde(213.7 mg·g-1) than that of pristine ZSM-5 for benzene(99.2 mg·g-1) and butyraldehyde(134.7 mg·g-1). The composite molecular sieves show a wide application foreground for harmful gas adsorbent for environmental protection.展开更多
文摘Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ) , which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0% to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.
基金This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053).
文摘A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of butyraldehyde glycol acetal catalyzed by H3PW12O40/MCM-48 was studied with butyraldehyde and glycol as reactants. H3PW12O40/MCM-48 was an excellent catalyst for the synthesizing butyraldehyde glycol acetal and Keggin structure of H3PW12O40 kept unchanged after being impregnated on surface of the molecular sieve support. Effects of n(butyraldehyde): n(glycol), catalyst dosage, cyclohexane(water-stripped reagent) and reaction time on yields of the product were investigated. The optimum conditions had been found, that was, molar ratio of butyraldehyde to glycol was 1: 1.6, mass ratio of catalyst used to the reactants was 0.25% and reaction time was 75 min. Under these conditions, the yield of butyraldehyde glycol acetal can reach 79.74%.
基金Funded by the China National Tobacco Corporation(110201101027(JH-02))
文摘The core-shell structures of ZSM-5 coated with mesoporous silica were synthesized by means of dodecylamine(DDA) surfactant. The results show that the mesoporous silica shells are coated on ZSM-5 cores and result in the formation of hierarchical porous structures. The thickness of the coating shell can be controlled by changing the adding amount of TEOS. The core-shell composites with the thickness of 35 nm possess high surface areas(about 528 m2·g-1), large pores(about 3.5 nm in diameter) on the silica shells. The composite molecular sieves display higher adsorption capacity for benzene(140.2 mg·g-1) and butyraldehyde(213.7 mg·g-1) than that of pristine ZSM-5 for benzene(99.2 mg·g-1) and butyraldehyde(134.7 mg·g-1). The composite molecular sieves show a wide application foreground for harmful gas adsorbent for environmental protection.