期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Sodium butyrate alleviates fructose-induced non-alcoholic fatty liver disease by remodeling gut microbiota to promoteγ-amino butyric acid production
1
作者 Qu Chen Lei Wu +4 位作者 Aijia Zhang Chen Wu Liuping Cai Yingping Xiao Yingdong Ni 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期961-971,共11页
Sodium butyrate(NaB)can regulate lipid metabolism and inhibit hepatic steatosis.This study aimed to investigate whether NaB can alleviate fructose-induced hepat ic steatosis via remodeling the gut microbiota and evalu... Sodium butyrate(NaB)can regulate lipid metabolism and inhibit hepatic steatosis.This study aimed to investigate whether NaB can alleviate fructose-induced hepat ic steatosis via remodeling the gut microbiota and evaluate the anti-fatty liver mechanisms.The results showed that NaB and NaB-remodeled gut microbiota significantly alleviated fructose-induced hepatic steatosis and increased plasma uric acid and fructose levels.Furthermore,both NaB and NaB-remodeled gut microbiota increased the abundance of Lactobacillus and altered the levels of plasma amino acids(upregulating gamma-amino butyric acid(GABA)and downregulating L-glutamic acid and L-arginine)in fructose-exposed mice.The correlation analysis showed that GABA levels positively correlated with Lactobacillus abundance,and increased GABA levels might promote the reduction of the hepatic triglyceride content.Further studies confirmed that GABA significantly reduced lipid deposition in mouse hepatocytes induced via fructose pretreatment in vitro.These findings suggested that NaB could ameliorate fructose-induced hepatic steatosis by regulating gut microbiota. 展开更多
关键词 butyrate FRUCTOSE Gut microbiota Hepatic steatosis
下载PDF
Preparation of Cellulose Acetate Butyrate Porous Micro/Nanofibrous Membranes and Their Properties 被引量:1
2
作者 张晓晓 苏亚洲 +4 位作者 石凌翔 王玉洁 黄长芬 王新厚 孙晓霞 《Journal of Donghua University(English Edition)》 CAS 2023年第5期461-466,共6页
Cellulose acetate butyrate(CAB)is a cellulose ester that is commonly used in applications such as coatings and leather brighteners.However,its appearance in a fibrous form is rarely reported.CAB porous micro/nanofibro... Cellulose acetate butyrate(CAB)is a cellulose ester that is commonly used in applications such as coatings and leather brighteners.However,its appearance in a fibrous form is rarely reported.CAB porous micro/nanofibrous membranes with a large number of nanopores on the fiber surface were successfully prepared by electrospinning with dichloromethane(DCM)/acetone(AC)as the mixed solvent.Apparent morphology,porosity,moisture permeability,air permeability,static water contact angles,and thermal conductivity of the fibrous membranes were investigated at different spinning voltages.The results showed that with the increase of the spinning voltage,the average fiber diameter of the CAB porous micro/nanofibrous membranes gradually decreased and the fiber diameter distribution was more uniform.When the spinning voltage reached 40 kV,the porosity reached 91.38%,the moisture permeability was up to 7430 g/(m^(2)·d),the air permeability was up to 36.289 mm/s,the static water contact angle was up to 145.0°,while the thermal conductivity of the fibrous membranes reached 0.030 W/(m·K).The material can be applied as thermal-insulation,waterproof and moisture-permeable membranes. 展开更多
关键词 ELECTROSPINNING cellulose acetate butyrate(CAB) porous material waterproof and permeable membrane low thermal conductivity
下载PDF
Sodium butyrate alleviates deoxynivalenol-induced hepatic cholesterol metabolic dysfunction via RORγ-mediated histone acetylation modification in weaning piglets
3
作者 Qiufang Zong Huan Qu +5 位作者 Yahui Zhao Haoyu Liu Shenglong Wu Shuai Wang Wenbin Bao Demin Cai 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期792-805,共14页
Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic hi... Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic histone acetylation.Therefore,our present study aimed to investigate whether a histone deacetylase inhibitor(sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol(DON) exposure by modulating cholesterol metabolism.Herein,we randomly divided 28 pigs into four groups,which were fed an uncontaminated basal diet,contaminated diet(4 mg DON/kg),uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet(4 mg DON/kg) supplemented with 0.2% NaBu for 28 d.Results:We found that the serum alanine transaminase(ALT),aspartate transaminase(AST),and alkaline phosphatase(ALP) were all increased in pigs exposed to DON,indicative of significant liver injury.Furthermore,the cholesterol content in the serum of DON-exposed pigs was significantly reduced,compared to the healthy Vehicle group.Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure.In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated.Importantly,NaBu effectively restored parameters associated with liver injury,along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway.Mechanistically,we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment.We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu,as determined by ChIP-qPCR analysis.Notably,nuclear receptor RORγ,a novel regulator of cholesterol biosynthesis,was found in the hyperacetylated regions.Again,a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu.Consistent with RORγ expression,NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR,SQLE,and DHCR24.Furthermore,we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes.Conclusions:Collectively,our results demonstrate the utility of the natural product Na Bu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification. 展开更多
关键词 Cholesterol biosynthesis DON Histone acetylation RORγ Sodium butyrate
下载PDF
The specificity of ten non-digestible carbohydrates to enhance butyrate-producing bacteria and butyrate production in vitro fermentation
4
作者 Jingjing Xu Ruyue Wang +9 位作者 Weibao Liu Zhongwei Yin Jianrong Wu Xun Yu Wen Wang Hongtao Zhang Zhitao Li Minjie Gao Li Zhu Xiaobei Zhan 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2344-2354,共11页
Butyrate and butyrate-producing bacteria are important indicators of gut microbial metabolism in human health.Ten non-digestible carbohydrates(NDCs),including inulin,fructooligosaccharide(FOS),oatsβ-glucans(OGS),oats... Butyrate and butyrate-producing bacteria are important indicators of gut microbial metabolism in human health.Ten non-digestible carbohydrates(NDCs),including inulin,fructooligosaccharide(FOS),oatsβ-glucans(OGS),oatsβ-glucan oligosaccharides(OGOS),Astragalus polysaccharides(APS),Astragalus oligosaccharides(AOS),xanthan gum oligosaccharides(XGOS),gellan gum oligosaccharides(GGOS),curdlan oligosaccharides(COS),and pullulan oligosaccharides(POS)were used to investigate NDC specifi city in modulating butyrate-producing bacteria and butyrate production in 48 h in vitro fermentation studies in combination with fecal inocula from 7 healthy donors and 11 patients with type 2 diabetes(T2D).We observed that the amount of these ten NDCs utilized depended on NDC structure and inter-individual gut microbial differences.XGOS and GGOS fermentations signifi cantly increased butyrate-producing bacteria(especially f_Lachnospiraceae)and butyric acid production.Furthermore,XGOS and GGOS fermentations showed a better ability to consistently modulate gut microbiota composition and metabolic properties between individuals of healthy donors or T2D patients when compared to inulin,FOS,APS,AOS,OGS,OGOS,COS and POS fermentation.This research indicated that xanthan gum and gellan gum oligosaccharides have strong specifi city to enhance butyrate-producing bacteria and butyrate production. 展开更多
关键词 Non-digestible carbohydrates Gut microbiota Butyric acid butyrate-producing bacteria
下载PDF
Prospects for clinical applications of butyrate-producing bacteria 被引量:1
5
作者 Li-Bin Zhu Yu-Chen Zhang +1 位作者 Han-Hui Huang Jing Lin 《World Journal of Clinical Pediatrics》 2021年第5期84-92,共9页
As the major source of energy for colonic mucosal cells and as an important regulator of gene expression,inflammation,differentiation,and apoptosis in host cells,microbiota-derived butyrate can enhance the intestinal ... As the major source of energy for colonic mucosal cells and as an important regulator of gene expression,inflammation,differentiation,and apoptosis in host cells,microbiota-derived butyrate can enhance the intestinal mucosal immune barrier,modulate systemic immune response,and prevent infections.Maintaining a certain level of butyrate production in the gut can help balance intestinal microbiota,regulate host immune response,and promote the development and maintenance of the intestinal mucosal barrier.Butyrate-producing bacteria act as probiotics and play important roles in a variety of normal biological functions.Bacteriotherapeutic supplementation by using fecal microbiota transplantation to restore butyrate-producing commensal bacteria in the gut has been very successful in the treatment of recurrent and refractory Clostridium difficile(C.difficile)infection or C.difficile-negative nosocomial diarrhea.Administration of probiotics that include butyrate-producing bacteria may have a role in the treatment of inflammatory bowel diseases and in the prevention of necrotizing enterocolitis and late-onset sepsis in premature infants.Furthermore,modulating gut microbiota with dietary approaches may improve intestinal dysbiosis commonly seen in patients with obesity-associated metabolic disorders.Supplementation with a butyrate-producing bacterial stain might be used to increase energy expenditure,improve insulin sensitivity,and to help control obesity and metabolic syndrome. 展开更多
关键词 butyrate butyrate-producing bacteria Gut microbiota Intestinal mucosal barrier Metabolic syndrome PROBIOTICS
下载PDF
Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression 被引量:7
6
作者 Hae June Lee Yeonghoon Son +6 位作者 Minyoung Lee Changjong Moon Sung Ho Kim In Sik Shin Miyoung Yang Sangwoo Bae Joong Sun Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第9期1530-1535,共6页
Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in anim... Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016. 展开更多
关键词 sodium butyrate RADIOPROTECTOR ionizing radiation hippocampal damage cAMP response element binding BRAIN-DERIVED NEUROTROPHIC factor histone DEACETYLASE inhibitor neurogenesis
下载PDF
Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning 被引量:10
7
作者 Wenhui Liu ALa Teng Zhu La +4 位作者 Alexander Evans Shengtao Gao Zhongtang Yu Dengpan Bu Lu Ma 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第1期305-313,共9页
Background: There is increasing research interest in using short-chain fatty acids(SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to e... Background: There is increasing research interest in using short-chain fatty acids(SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate(SB) in liquid feeds(milk, milk replacer, and the mixture of both)on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves(4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups(n = 10 per group) using the RAND function in Excel. The control group was fed no SB(SB0), while the other three groups were supplemented with 15(SB15),30(SB30), or 45(SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only(days 2 to 20), then a mixture of milk and milk replacer(days 21 to 23), and finally milk replacer only(days 24 to 60).Results: The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH;concentrations of NH_3-N, individual and total VFAs;or acetate:propionate(A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period.Conclusions: Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds(milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning. 展开更多
关键词 Antioxidant activity CALF Immune function Sodium butyrate
下载PDF
CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer 被引量:6
8
作者 Michael Bordonaro Darina L Lazarova 《World Journal of Gastroenterology》 SCIE CAS 2015年第27期8238-8248,共11页
This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein(CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer(CRC). Specifically, we focus ... This paper reviews the distinctive roles played by the transcriptional coactivators CREB-binding protein(CBP) and p300 in Wnt/β-catenin signaling and cell physiology in colorectal cancer(CRC). Specifically, we focus on the effects of CBP- and p300-mediated Wnt activity on(1) neoplastic progression;(2) the activities of butyrate, a breakdown product of dietary fiber, on cell signaling and colonic cell physiology;(3) the development of resistance to histone deacetylase inhibitors(HDACis), including butyrate and synthetic HDACis, in colonic cells; and(4) the physiology and number of cancer stem cells. Mutations of the Wnt/β-catenin signaling pathway initiate the majority of CRC cases, and we have shown that hyperactivation of this pathway by butyrate and other HDACis promotes CRC cell apoptosis. This activity by butyrate may in part explain the preventive action of fiber against CRC. However, individuals with a high-fiber diet may still develop neoplasia; therefore, resistance to the chemopreventive action of butyrate likely contributes to CRC. CBP or p300 may modify the ability of butyrate to influence colonic cell physiology since the two transcriptional coactivators affect Wnt signaling, and likely, its hyperactivation by butyrate. Also, CBP and p300 likely affect colonic tumorigenesis, as well as stem cell pluripotency. Improvement of CRC prevention and therapy requires a better understanding of the alterations in Wnt signaling and gene expression that underlie neoplastic progression, stem cell fate, and the development of resistance to butyrate and clinically relevant HDACis. Detailed knowledge of how CBP- and p300 modulate colonic cell physiology may lead to new approaches for anti-CRC prevention and therapeutics, particularly with respect to combinatorial therapy of CBP/p300 inhibitors with HDACis. 展开更多
关键词 CREB-binding protein P300 WNT COLORECTALCANCER butyrate stem cells
下载PDF
Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis 被引量:5
9
作者 Mahsa Moeinian Seyedeh Farnaz Ghasemi-Niri +4 位作者 Shilan Mozaffari Amir Hossein Abdolghaffari Maryam Baeeri Mona Navaea-Nigjeh Mohammad Abdollahi 《World Journal of Gastroenterology》 SCIE CAS 2014年第31期10876-10885,共10页
AIM: To investigate the beneficial effect of the combination of butyrate, Lactobacillus casei, and L-carnitine in a rat colitis model.METHODS: Rats were divided into seven groups. Fourgroups received oral butyrate, L-... AIM: To investigate the beneficial effect of the combination of butyrate, Lactobacillus casei, and L-carnitine in a rat colitis model.METHODS: Rats were divided into seven groups. Fourgroups received oral butyrate, L-carnitine, Lactobacillus casei and the combination of three agents for 10 consecutive days. The remaining groups included negative and positive controls and a sham group. Macroscopic, histopathological examinations, and biomarkers such as tumor necrosis factor-alpha(TNF-α) and interlukin-1β(IL-1β), myeloperoxidase(MPO), thiobarbituric acid reactive substances(TBARS), and ferric reduced ability of plasma(FRAP) were determined in the colon.RESULTS: The combination therapy exhibited a significant beneficial effect in alleviation of colitis compared to controls. Overall changes in reduction of TNF-α(114.66 ± 18.26 vs 171.78 ± 9.48 pg/mg protein, P < 0.05), IL-1β(24.9 ± 1.07 vs 33.06 ± 2.16 pg/mg protein, P < 0.05), TBARS(0.2 ± 0.03 vs 0.49 ± 0.04 μg/mg protein, P < 0.01), MPO(15.32 ± 0.4 vs 27.24 ± 3.84 U/mg protein, P < 0.05), and elevation of FRAP(23.46 ± 1.2 vs 15.02 ± 2.37 μmol/L, P < 0.05) support the preference of the combination therapy in comparison to controls. Although the monotherapies were also effective in improvement of colitis markers, the combination therapy was much better in improvement of colon oxidative stress markers including FRAP, TBARS, and MPO.CONCLUSION: The present combination is a suitable mixture in control of experimental colitis and should be trialed in the clinical setting. 展开更多
关键词 butyrate L-CARNITINE COLITIS Inflammatory BOWEL di
下载PDF
Sodium butyrate protects against toxin-induced acute liver failure in rats 被引量:6
10
作者 Fan Yang Li-Kun Wang +3 位作者 Xun Li Lu-Wen Wang Xiao-Qun Han Zuo-Jiong Gong 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第3期309-315,共7页
BACKGROUND: Acute liver failure(ALF) is a serious clinical syndrome with high mortality. Sodium butyrate has been shown to alleviate organ injury in a wide variety of preclinical models of critical diseases. The aim o... BACKGROUND: Acute liver failure(ALF) is a serious clinical syndrome with high mortality. Sodium butyrate has been shown to alleviate organ injury in a wide variety of preclinical models of critical diseases. The aim of this study was to investigate the protective effect of sodium butyrate on ALF in rats.METHODS: All rats were randomly divided into control,model and sodium butyrate treatment groups. Except the control group, the rats were induced ALF animal model by subcutaneous injection of human serum albumin+D- galactosamine+lipopolysaccharide. After induction of ALF,the rats in the treatment group received sodium butyrate(500mg/kg) at 12-hour or 24-hour time point. Fourty-eight hours after ALF induction, the animals were sacrificed and samples were harvested. Serum endotoxin, high mobility group box-1(HMGB1), liver function parameters, tumor necrosis factoralpha(TNF-α) and interferon-gamma(IFN-γ) were measured.The expression of HMGB1 and nuclear factor-kappa B(NF-κB)p65 protein in liver tissue was detected by Western blotting. The histological changes of liver and intestine were examined. The survival duration was also observed.RESULTS: Serum endotoxin, alanine aminotransferase, HMGB1,TNF-α and IFN-γ were significantly increased and the liver histology showed more severe histopathological injury in the model group compared with the control group(P<0.05).Compared to the model group, sodium butyrate treatment significantly improved the histopathological changes in the liver and intestine, reduced serum endotoxin and inflammatory cytokines, suppressed HMGB1 and NF-кB p65 proteins in liver tissue, and prolonged the survival duration regardless of treatment at 12 hours or 24 hours after induction of ALF(P<0.05).CONCLUSIONS: Sodium butyrate protected the liver from toxin-induced ALF in rats. The mechanisms may be due to direct hepatoprotection and decreased intestinal permeability. 展开更多
关键词 acute liver failure high mobility group box-1 nuclear factor-kappa B p65 animal model sodium butyrate
下载PDF
Sodium Butyrate Induces Apoptosis of Human Colon Cancer Cells by Modulating ERK and Sphingosine Kinase 2 被引量:4
11
作者 XIAO Min LIU Yun Gang +1 位作者 ZOU Meng Chen ZOU Fei 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第3期197-203,共7页
Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U012... Objective To investigate the role of extracellular signal-regulated kinase (ERK) in apoptosis of human colon cancer (HCT116) cells. Methods After the HCT116 cells were pretreated with specific ERK inhibitor (U0126) or specific siRNA and exposed to 10 mmol/L sodium butyrate (NaBT) for 24 h, their apoptosis was detected by flow cytometry, levels of SphK2 and ERK protein were measured by Western blot, and translocation of SphK2 was assayed by immunofluorescence microscopy. Results The U0126 and siRNAs specific for SphK2 blocked the export of SphK2 from nuclei to cytoplasm and increased the apoptosis of HCT116 cells following NaBT exposure. Over-expression of PKD decreased NaBT-induced apoptosis of HCT116 cells, which was reversed by U0126. Furthermore, transfection of HCT116 cells with constitutively activated PKD plasmids recovered the UO126-blocked export of SphK2. Conclusion ERK regulates the export of SphK2 and apoptosis of HCT116 cells by modulating PKD. Modulation of these molecules may help increase the sensitivity of colon cancer cells to the physiologic anti-colon cancer agent, NaBT. 展开更多
关键词 Sodium butyrate APOPTOSIS ERK Sphingosine kinase 2 Colon caner
下载PDF
Protective effects of sodium butyrate on rotavirus inducing endoplasmic reticulum stress-mediated apoptosis via PERK-eIF2αsignaling pathway in IPEC-J2 cells 被引量:2
12
作者 Ye Zhao Ningming Hu +11 位作者 Qin Jiang Li Zhu Ming Zhang Jun Jiang Manyi Xiong Mingxian Yang Jiandong Yang Linyuan Shen Shunhua Zhang Lili Niu Lei Chen Daiwen Chen 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第4期1543-1554,共12页
Background:Rotavirus(RV)is a major pathogen that causes severe gastroenteritis in infants and young animals.Endoplasmic reticulum(ER)stress and subsequent apoptosis play pivotal role in virus infection.However,the pro... Background:Rotavirus(RV)is a major pathogen that causes severe gastroenteritis in infants and young animals.Endoplasmic reticulum(ER)stress and subsequent apoptosis play pivotal role in virus infection.However,the protective mechanisms of intestinal damage caused by RV are poorly defined,especially the molecular pathways related to enterocytes apoptosis.Thus,the aim of this study was to investigate the protective effect and mechanism of sodium butyrate(SB)on RV-induced apoptosis of IPEC-J2 cells.Results:The RV infection led to significant cell apoptosis,increased the expression levels of ER stress(ERS)markers,phosphorylated protein kinase-like ER kinase(PERK),eukaryotic initiation factor 2 alpha(eIF2α),caspase9,and caspase3.Blocking PERK pathway using specific inhibitor GSK subsequently reversed RV-induced cell apoptosis.The SB treatment significantly inhibited RV-induced ERS by decreasing the expression of glucose regulated protein 78(GRP78),PERK,and eIF2α.In addition,SB treatment restrained the ERS-mediated apoptotic pathway,as indicated by downregulation of C/EBP homologous protein(CHOP)mRNA level,as well as decreased cleaved caspase9 and caspase3 protein levels.Furthermore,siRNA-induced GPR109a knockdown significantly suppressed the protective effect of SB on RV-induced cell apoptosis.Conclusions:These results indicate that SB exerts protective effects against RV-induced cell apoptosis through inhibiting ERS mediated apoptosis by regulating PERK-eIF2αsignaling pathway via GPR109a,which provide new ideas for the prevention and control of RV. 展开更多
关键词 Apoptosis IPEC-J2 PERK-eIF2α ROTAVIRUS Sodium butyrate
下载PDF
Suppression of fibrosis in human pterygium fibroblasts by butyrate and phenylbutyrate 被引量:2
13
作者 Yuka Koga Noriaki Maeshige +5 位作者 Hiroto Tabuchi Mikiko Uemura Michiko Aoyama-Ishikawa Makoto Miyoshi Chikako Katakami Makoto Usami 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第9期1337-1343,共7页
AIM:To evaluate the antifibrogenic effects of butyrate or phenylbutyrate,a chemical derivative of butyrate,in human pterygium fibroblasts.METHODS:Human pterygium fibroblasts obtained from patient pterygium tissue we... AIM:To evaluate the antifibrogenic effects of butyrate or phenylbutyrate,a chemical derivative of butyrate,in human pterygium fibroblasts.METHODS:Human pterygium fibroblasts obtained from patient pterygium tissue were treated with butyrate or phenylbutyrate for 48h.Expression ofα-smooth muscle actin,collagen I,collagen III and matrix metalloproteinase-1m RNA was measured by quantitative real-time reverse transcription polymerase chain reaction,and acetylated histone was evaluated by Western blotting.RESULTS:Butyrate inhibitedα-smooth muscle actin,type III collagen and matrix metalloproteinase-1 expressions,and phenylbutyrate inhibited types I and III collagen and matrix metalloproteinase-1 expressions without changing cell viability as well as both of these increased histone acetylation.These results suggested that butyrate and phenylbutyrate suppress fibrosis through a mechanism involving histone deacetylase inhibitor.CONCLUSION:This indicates that butyrate or phenylbutyrate have antifibrogenic effects in human pterygium fibroblasts and could be novel types of prophylactic and/or therapeutic drugs for pterygium,especially phenylbutyrate,which does not have the unpleasant smell associated with butyrate. 展开更多
关键词 butyrate phenylbutymte PTERYGIUM FIBROBLASTS antifibrogenic effect
下载PDF
Butyrate in combination with forskolin alleviates necrotic enteritis,increases feed efficiency,and improves carcass composition of broilers 被引量:1
14
作者 Qing Yang Binlong Chen +5 位作者 Kelsy Robinson Thiago Belem Wentao Lyu Zhuo Deng Ranjith Ramanathan Guolong Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2022年第4期1115-1125,共11页
Background:The emergence of antimicrobial resistance has necessitated the development of effective alternatives to antibiotics for livestock and poultry production.This study investigated a possible synergy between bu... Background:The emergence of antimicrobial resistance has necessitated the development of effective alternatives to antibiotics for livestock and poultry production.This study investigated a possible synergy between butyrate and forskolin(a natural labdane diterpene)in enhancing innate host defense,barrier function,disease resistance,growth performance,and meat quality of broilers.Methods:The expressions of representative genes involved in host defense(AvBD9 and AvBD10),barrier function(MUC2,CLDN1,and TJP1),and inflammation(IL-1β)were measured in chicken HD11 macrophages in response to butyrate and forskolin in the presence or absence of bacterial lipopolysaccharides(LPS).Intestinal lesions and the Clostridium perfringens titers were also assessed in C.perfringens-challenged chickens fed butyrate and forskolincontaining Coleus forskohlii(CF)extract individually or in combination.Furthermore,growth performance and carcass characteristics were evaluated in broilers supplemented with butyrate and the CF extract for 42 d.Results:Butyrate and forskolin synergistically induced the expressions of AvBD9,AvBD10,and MUC2 in chicken HD11 cells(P<0.05)and the synergy was maintained in the presence of LPS.Butyrate and forskolin also suppressed LPS-induced IL-1βgene expression in HD11 cells in a synergistic manner(P<0.05).The two compounds significantly reduced the intestinal lesions of C.perfringens-challenged chickens when combined(P<0.05),but not individually.Furthermore,butyrate in combination with forskolin-containing CF extract had no influence on weight gain,but significantly reduced feed intake(P<0.05)with a strong tendency to improve feed efficiency(P=0.07)in a 42-d feeding trial.Desirably,the butyrate/forskolin combination significantly decreased abdominal fat deposition(P=0.01)with no impact on the carcass yield,breast meat color,drip loss,or pH of d-42 broilers.Conclusions:Butyrate and forskolin has potential to be developed as novel antibiotic alternatives to improve disease resistance,feed efficiency,and carcass composition of broilers. 展开更多
关键词 Antibiotic alternatives butyrate FORSKOLIN Necrotic enteritis POULTRY
下载PDF
Effect and Comparison of Sodium Butyrate and Trichostatin A on the Proliferation/Differentiation of K562 被引量:1
15
作者 李春蕊 刘文励 +4 位作者 孟凡凯 黄伟 周剑锋 孙汉英 冯永东 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2003年第3期249-253,共5页
In order to explore the molecular mechanisms of sodium butyrate and trichostatin A on K562 cell proliferation/differentiation, K562 cells were grown in the absence or presence of sodium butyrate or trichostatin A Th... In order to explore the molecular mechanisms of sodium butyrate and trichostatin A on K562 cell proliferation/differentiation, K562 cells were grown in the absence or presence of sodium butyrate or trichostatin A The percentage of viable cells was determined by trypan blue exclusion Differentiation was determined by nitro-blue tetrazolium (NBT) reduction and cell surface adhesion molecules analyzed by FACS Cell cycle distribution was studied after DNA staining by propidium iodide Cell cycle regulatory proteins were detected by Western blot and reverse transcription-polymerase chain reaction The results showed that sodiun butyrate blocked cells mainly at the G0/G1 phase of the cell cycle, whereas trichostatin A arrested the cells at G2 phase Sodium butyrate could down-regulate the mRNA expression of cyclin D1, but not affect its protein expression; down-regulate the protein expression of cyclin D3, but not affect its mRNA expression Trichostatin A showed similar effects on cyclin D1 and D3 as sodium butyrate Both sodium butyrate and trichostatin A could stimulate p21 expression of K562 cells at mRNA and protein levels It may be concluded that sodium butyrate and trichostatin A could promote the proliferation/differentiation of the K562 cells, which might be contributed to the induced expression of cyclin D3 and p21 proteins 展开更多
关键词 sodium butyrate cyclin D P21 trichostatin A
下载PDF
The Effect of Sodium Butyrate in Combination with ATRA on the Proliferation/Differentiation of SKM-1 被引量:1
16
作者 黄梅 刘文励 +4 位作者 李春蕊 邓金牛 周剑锋 张东华 孙汉英 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2004年第4期334-337,共4页
To explore the molecular mechanisms of sodium butyrate working on SKM-1 cell proliferation/differentiation and to study its synergistic effect with all-trans retinoic acid (ATRA), SKM-1 cells were grown in the absence... To explore the molecular mechanisms of sodium butyrate working on SKM-1 cell proliferation/differentiation and to study its synergistic effect with all-trans retinoic acid (ATRA), SKM-1 cells were grown in the absence or presence of sodium butyrate and/or ATRA. The percentage of viable cells was determined by trypan blue exclusion. Differentiation was determined by nitroblue tetrazolium (NBT) reduction and cell surface adhesion molecules was analyzed by FACS. Cell cycle distribution was examined after DNA staining by propidium iodide. D-type cyclins, cdks and P21 mRNA were studied by reverse transcription-polymerase chain reaction. Our results showed that sodiun butyrate and/or ATRA blocked cells mainly in the G 0/G 1 phase of the cell cycle. ATRA inhibited the mRNA expression of CDK6, CDK4, cyclinD3 and cyclinD1. Sodium butyrate inhibited the mRNA expression of CDK2, cyclinD2 and cyclinD1. ATRA and sodium butyrate inhibited the mRNA expression of CDK6, CDK4, CDK2, cyclinD1, cyclinD2 and cyclinD3. Both ATRA and/or sodium butyrate stimulated p21 expression at the mRNA levels. Our results suggest that the effect of sodium butyrate on cell proliferation/differentiation might be linked to its ability to induce expression of p21 mRNA and inhibit the cyclin-cdk complexes. Our observations support the notion that the sodium butyrate works synergistically with ATRA. 展开更多
关键词 sodium butyrate ATRA SKM-1 cell cycle
下载PDF
MODULATION OF MDR-1 GENE IN HUMAN BREAST CANCER CELLS BY SODIUM BUTYRATE AND DMSO
17
作者 张荣河 何三光 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2001年第1期27-30,共4页
Objective: To analyze the regulation effect of MDR-1 gene in human breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure t... Objective: To analyze the regulation effect of MDR-1 gene in human breast cancer cell by the differentiating agents, sodium butyrate and dimethyl sulfoxide. Methods: 1. A sensitive assay, RT-PCR, was used to measure the mRNA level before and after the treatment of sodium butyrate, DMSO, using β-actin as control; 2. Evaluated the effect of sodium butyrate, DMSO on MDR-1 gene expression of human breast cancer at the protein level by immunoflow cytometry; 3. P-glycoprotein function was examined after accumulation of the fluorescent drug, Phodamine-123, by flow cytometry; 4. Chemosensitivity to doxorubicin was analyzed using the MTT assay. Results: Sodium butyrate and DMSO were found to increase the MDR characteristics on MDR-1 gene, MDR-1 expression levels, P-glycoprotein function and chemosensitivity to doxorubicin. Conclusion: sodium butyrate, DMSO can modulate the MDR-1 gene at gene level, protein level, protein function level and cell level. 展开更多
关键词 MDR-1 Sodium butyrate DMSO Breast cancer
下载PDF
Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator
18
作者 WANG Ping WANG Lei +5 位作者 WANG Li-cheng LI Chun-yuan WANG Ren MIAO Qing-hua YANG Ming WANG Zhi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第1期72-75,共4页
A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the difference of hydro... A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the difference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantioselectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis of esters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate. 展开更多
关键词 pH indicator ENANTIOSELECTIVITY LIPASE Glycidyl butyrate
下载PDF
Contribution of Decreased Expression of Ku70 to Enhanced Radiosensitivity by Sodium Butyrate in Glioblastoma Cell Line(U251)
19
作者 李宇辉 周红霞 +6 位作者 邢恩明 Meera Dassarath 任精华 董晓荣 刘红利 杨坤禹 伍钢 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第3期359-364,共6页
The present study investigated the enhanced radiosensitivity of U-251 cells induced by sodium butyrate(NaB) and its possible mechanisms.Increased radiosensitivity of U251 cells was examined by clonogenic cell surviv... The present study investigated the enhanced radiosensitivity of U-251 cells induced by sodium butyrate(NaB) and its possible mechanisms.Increased radiosensitivity of U251 cells was examined by clonogenic cell survival assays.The expression of Ku70 mRNA and protein was detected by using RT-PCR and Western blotting respectively.γ-H2AX foci were measured at different time points after ionizing irradiation alone or combined with NaB treatment.The results showed that cell survival rate was significantly reduced,both D0 and Dq values were decreased(D0:1.43 Gy vs.1.76 Gy;Dq:1.22 Gy vs.2.05 Gy) after the combined treatment as compared with irradiation alone,and sensitivity enhancing ratio(SER) reached 1.23.The average number of γ-H2AX foci per cell receiving the combined treatment was significantly increased at different time points,and the expression levels of Ku70 mRNA and protein were suppressed by NaB in a dose-dependent manner.It was concluded that enhanced radiosensitivity induced by NaB involves an inhibited expression of Ku70 and an increase in γ-H2AX foci,which suggests decreased ability in DSB repair. 展开更多
关键词 sodium butyrate RADIOSENSITIVITY KU70 DNA double-strand breaks Γ-H2AX
下载PDF
Butyrate inhibits the bovine rumen epithelial cell proliferation via downregulation of positive regulators at G0/G1 phase checkpoint
20
作者 KANG ZHAN MAOCHENG JIANG +2 位作者 TIANYU YANG ZIXUAN HU GUOQI ZHAO 《BIOCELL》 SCIE 2022年第7期1697-1704,共8页
Short-chain fatty acids(SCFAs)butyrate promote the postnatal rumen epithelial development and maturation in ruminants.However,molecular mechanisms of effects of butyrate on the bovine rumen epithelial cells(BRECs)prol... Short-chain fatty acids(SCFAs)butyrate promote the postnatal rumen epithelial development and maturation in ruminants.However,molecular mechanisms of effects of butyrate on the bovine rumen epithelial cells(BRECs)proliferation remain elusive.Therefore,purpose of this study was to investigate the effects of butyrate on the expression of genes and proteins at G0/G1 and S phase of BRECs cycle.Our results showed that BRECs treated with butyrate inhibited(P<0.05)the proliferation of BRECs,relatively to control.Flow cytometric assays revealed that butyrate triggers the BRECs cycle arrest at the G0/G1 phase.qRT-PCR analyses of mRNA level of genes involved in the G0/G1 phase of cell cycle showed that butyrate significantly upregulated(P<0.001)the expression of mRNA encoding p21^(Cip1)compared with control group,but it decreased(P<0.05)the mRNA levels of cyclin D1 and CDK4 genes at G0/G1 phase checkpoint compared with control.Moreover,Western blot also revealed that butyrate downregulated the expression of cyclin D3,CDK6,p-Rb,and E2F1 proteins involved in the modulation of G0/G1 phase of cell cycle.In conclusion,our results demonstrated that butyrate inhibits the proliferation of BRECs via downregulation of positive regulators at G0/G1 phase checkpoint. 展开更多
关键词 butyrate Bovine rumen epithelial cells PROLIFERATION G0/G1 phase
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部