Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their...Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.展开更多
目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈...目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。展开更多
文摘Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.
文摘目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。