The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is ...The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.展开更多
文摘The joint-bolt-African Vulture optimization algorithm(AVOA)model is proposed for the design of building connections to improve the stability of steel beam-to-column connections.For this algorithm,the type of steel is first determined,and the number of bolts needed by the corresponding steel type is referenced in Eurocode 3.Then,the bearing capacity of the joint can be calculated.The joint-bolt-AVOA model is established by substituting the bolt number required by the steel into the algorithm to obtain the optimal bolt number required while ensuring joint stability.The results show that the number of bolts required by the joint-bolt-AVOA model based on the stability of steel is lower than that calculated by Eurocode 3.Therefore,AVOA can effectively optimize the number of bolts needed in building connections and save resources.