针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把...针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。展开更多
为了提高基于拍摄方式的文档图像的二值化效果,降低光学字符识别(optical character recognition,OCR)系统的文字识别错误率,提出了一种全局阈值与局部阈值相结合的二值化算法——VFCM。该算法使用最大方差比方法产生全局阈值,使用FCM(F...为了提高基于拍摄方式的文档图像的二值化效果,降低光学字符识别(optical character recognition,OCR)系统的文字识别错误率,提出了一种全局阈值与局部阈值相结合的二值化算法——VFCM。该算法使用最大方差比方法产生全局阈值,使用FCM(FuzzyC-Means)聚类方法产生局部阈值。这两种方法的结合能够较好地保留字符的笔画细节,并能有效地消除伪影。实验结果表明,该算法可以取得比较好的二值化效果,并能带来OCR系统识别率的有效提高。展开更多
文摘针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。
文摘为了提高基于拍摄方式的文档图像的二值化效果,降低光学字符识别(optical character recognition,OCR)系统的文字识别错误率,提出了一种全局阈值与局部阈值相结合的二值化算法——VFCM。该算法使用最大方差比方法产生全局阈值,使用FCM(FuzzyC-Means)聚类方法产生局部阈值。这两种方法的结合能够较好地保留字符的笔画细节,并能有效地消除伪影。实验结果表明,该算法可以取得比较好的二值化效果,并能带来OCR系统识别率的有效提高。