Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. I...C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. In the present study, the root traits including root distribution, root length(RL), root surface area(RSA), root weight(RW) and specific root length(SRL) of both species in two growth forms were investigated to clarify their response to facilitation in associated growth. Six isolated plants of each species, as well as six associated plants similar in size and development were selected during the plant growing season, and their roots were excavated at 0–10, 10–20, 20–30, 30–40 and 40–50 cm soil depths at the end of the growing season. All the roots of each plant were separated into the two categories of fine roots(2 mm diameter) and coarse roots(≥2 mm diameter). Root traits such as RL and RSA in the fine and coarse roots were obtained by the root analyzing system WinRHIZO. Most of the coarse roots in R. soongorica and S. passerina were distributed in the top 10 cm of the soil in both growth forms, whereas the fine roots of the two plant species were found mainly in the 10–20 and 20–30 cm soil depths in isolated growth, respectively. However, the fine roots of both species were mostly overlapped in 10–20 cm soil depth in associated growth. The root/canopy ratios of both species reduced, whereas the ratios of their fine roots to coarse roots in RL increased, and both species had an increased SRL in the fine roots in associated growth. In addition, there was the increase in RL of fine roots and content of root N for S. passerina in associated growth. Taken together, the root growth of S. passerina was facilitated for water and nutrient exploration under the interaction of the overlapped roots in both species in associated growth, and higher SRL allowed both species to more effectively adapt to the infertile soil in the desert ecosystem.展开更多
The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by...The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aoxla Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photo- respiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloro-plasts by the MaI/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants.展开更多
The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The tw...The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The two main methods to capture CO_(2)released from soils are the alkali trap method and the direct gas sampling method.A 25-d laboratory incubation experiment was conducted to compare the efficacies of these two methods to analyze CO_(2)emissions from the non-carbonate and carbonate-rich soils.An isotopic fraction was introduced into the calculations to determine the impacts on partitioning of the sources of CO_(2)into soil organic carbon(SOC)and soil inorganic carbon(SIC)and into C3 and/or C4 plant-derived SOC.The results indicated that CO_(2)emissions from the non-carbonate soil measured using the alkali trap and gas sampling methods were not significantly different.For the carbonate-rich soil,the CO_(2)emission measured using the alkali trap method was significantly higher than that measured using the gas sampling method from the 14 th day of incubation onwards.Although SOC and SIC each accounted for about 50%of total soil C in the carbonate-rich soil,SOC decomposition contributed 57%–72%of the total CO_(2)emitted.For both non-carbonate and carbonate-rich soils,the SOC derived from C4 plants decomposed faster than that originated from C3 plants.We propose that for carbonate soil,CO_(2)emission may be overestimated using the alkali trap method because of decreasing CO_(2)pressure within the incubation jar,but underestimated using the direct gas sampling method.The gas sampling interval and ambient air may be important sources of error,and steps should be taken to mitigate errors related to these factors in soil incubation and CO_(2)quantification studies.展开更多
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金support by the National Natural Science Foundation of China (91025026, 31070359)the National Basic Research Program of China (Y31JA61001)
文摘C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. In the present study, the root traits including root distribution, root length(RL), root surface area(RSA), root weight(RW) and specific root length(SRL) of both species in two growth forms were investigated to clarify their response to facilitation in associated growth. Six isolated plants of each species, as well as six associated plants similar in size and development were selected during the plant growing season, and their roots were excavated at 0–10, 10–20, 20–30, 30–40 and 40–50 cm soil depths at the end of the growing season. All the roots of each plant were separated into the two categories of fine roots(2 mm diameter) and coarse roots(≥2 mm diameter). Root traits such as RL and RSA in the fine and coarse roots were obtained by the root analyzing system WinRHIZO. Most of the coarse roots in R. soongorica and S. passerina were distributed in the top 10 cm of the soil in both growth forms, whereas the fine roots of the two plant species were found mainly in the 10–20 and 20–30 cm soil depths in isolated growth, respectively. However, the fine roots of both species were mostly overlapped in 10–20 cm soil depth in associated growth. The root/canopy ratios of both species reduced, whereas the ratios of their fine roots to coarse roots in RL increased, and both species had an increased SRL in the fine roots in associated growth. In addition, there was the increase in RL of fine roots and content of root N for S. passerina in associated growth. Taken together, the root growth of S. passerina was facilitated for water and nutrient exploration under the interaction of the overlapped roots in both species in associated growth, and higher SRL allowed both species to more effectively adapt to the infertile soil in the desert ecosystem.
文摘The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aoxla Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photo- respiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloro-plasts by the MaI/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants.
基金supported by the National Key Research and Development Program of China(No.2016YFD0201200)the National Natural Science Foundation of China(Nos.31370527,31261140367,and 30870414)the Chinese Scholarship Council(No.201706350210)for the support of the work。
文摘The accurate quantification and source partitioning of CO_(2)emitted from carbonate(i.e.,Haplustalf)and non-carbonate(i.e.,Hapludult)soils are critically important for understanding terrestrial carbon(C)cycling.The two main methods to capture CO_(2)released from soils are the alkali trap method and the direct gas sampling method.A 25-d laboratory incubation experiment was conducted to compare the efficacies of these two methods to analyze CO_(2)emissions from the non-carbonate and carbonate-rich soils.An isotopic fraction was introduced into the calculations to determine the impacts on partitioning of the sources of CO_(2)into soil organic carbon(SOC)and soil inorganic carbon(SIC)and into C3 and/or C4 plant-derived SOC.The results indicated that CO_(2)emissions from the non-carbonate soil measured using the alkali trap and gas sampling methods were not significantly different.For the carbonate-rich soil,the CO_(2)emission measured using the alkali trap method was significantly higher than that measured using the gas sampling method from the 14 th day of incubation onwards.Although SOC and SIC each accounted for about 50%of total soil C in the carbonate-rich soil,SOC decomposition contributed 57%–72%of the total CO_(2)emitted.For both non-carbonate and carbonate-rich soils,the SOC derived from C4 plants decomposed faster than that originated from C3 plants.We propose that for carbonate soil,CO_(2)emission may be overestimated using the alkali trap method because of decreasing CO_(2)pressure within the incubation jar,but underestimated using the direct gas sampling method.The gas sampling interval and ambient air may be important sources of error,and steps should be taken to mitigate errors related to these factors in soil incubation and CO_(2)quantification studies.