期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
基于EM-FR-C5.0DT耦合模型的输气管道地质灾害风险预测模型
1
作者 艾昕宇 何鹏 +6 位作者 孟祥振 王新刚 李玉星 刘鹏 韩建红 梁裕如 由洋 《油气与新能源》 2024年第4期84-96,107,共14页
延安气田地处陕北山区,输气管道沿线发生地质灾害的风险较高,管道生产运行存在一定安全隐患,通过加强风险预测研究,可快速准确甄别沿线高后果区,对管道防灾减灾具有重要意义。为此,选取延安气田内部临镇-子长输气干线作为研究对象。首先... 延安气田地处陕北山区,输气管道沿线发生地质灾害的风险较高,管道生产运行存在一定安全隐患,通过加强风险预测研究,可快速准确甄别沿线高后果区,对管道防灾减灾具有重要意义。为此,选取延安气田内部临镇-子长输气干线作为研究对象。首先,通过相关性分析筛选出高程等11个影响因子,依次开展灾点空间分布规律研究;其次,采用加权频率比法将灾点属性值转换为可体现灾害风险贡献率的EM-FR(加权频率值),划分出低、极低风险区,在此范围内选取非灾点,以此构建EM-FR-C5.0DT(加权频率比-C5.0决策树)、EM-FR-BP(加权频率比-BP神经网络)等2种耦合模型,并预测研究区域的风险性;最后,在研究区域内随机选取非灾点,构建单一C5.0DT、BP模型,并与上述2种耦合模型开展精度对比分析。结果显示:耦合模型预测性能优于单一模型,其中EM-FR-C5.0DT模型效果最优。研究成果表明,在低、极低风险区内,选取非灾点构建数据集得到的耦合模型,可明显提升模型预测精度,更适合小样本地质灾害风险性建模,可为延安气田输气管道风险性研究提供一定借鉴。 展开更多
关键词 输气管道 熵值法 c5.0决策树 BP神经网络 风险性预测
下载PDF
基于C5.0决策树算法的电力营销数据异常识别方法
2
作者 郑欣桐 赵琪 《消费电子》 2024年第10期143-145,共3页
为了增强电力营销数据异常识别的精确度,进而能够精准捕捉异常数据模式,本文借助C5.0决策树算法,深入探索了电力营销数据异常识别方法。根据电力营销数据类型,选择相应的传感器采集数据,并对数据进行集成处理。从集成的数据中提取异常特... 为了增强电力营销数据异常识别的精确度,进而能够精准捕捉异常数据模式,本文借助C5.0决策树算法,深入探索了电力营销数据异常识别方法。根据电力营销数据类型,选择相应的传感器采集数据,并对数据进行集成处理。从集成的数据中提取异常特征,根据业务知识,选择对异常识别有重要影响的特征。在此基础上,构建C5.0决策树,根据特征变量的取值,识别数据异常,输出异常标识。实验测试结果表明,该方法应用后,在测试样本数量逐渐增加的情况下,数据异常识别误报率最高不超过1%,具有较高的识别准确性。 展开更多
关键词 c5.0决策树算法 电力营销 识别 异常 数据
下载PDF
基于改进C5.0决策树算法的电力营销异常数据挖掘研究
3
作者 肖杰 《消费电子》 2024年第8期63-65,共3页
由于电力营销数据规模较大且数据组成复杂,传统挖掘方法容易出现异常数据识别不准确的问题,本文研究基于改进C5.0决策树算法的电力营销异常数据挖掘。通过收集与预处理等步骤做好电力营销数据的准备工作,引入信息熵改进C5.0决策树算法... 由于电力营销数据规模较大且数据组成复杂,传统挖掘方法容易出现异常数据识别不准确的问题,本文研究基于改进C5.0决策树算法的电力营销异常数据挖掘。通过收集与预处理等步骤做好电力营销数据的准备工作,引入信息熵改进C5.0决策树算法的属性选择方式,并利用改进后算法挖掘电力营销异常数据。实验结果表明,设计方法下电力营销异常数据挖掘结果的正确率高达97.5%,挖掘性能较强。 展开更多
关键词 改进c5.0决策树算法 电力营销 营销数据 异常数据 数据挖掘
下载PDF
基于C5.0决策树分类算法的ETM+影像信息提取 被引量:32
4
作者 温兴平 胡光道 杨晓峰 《地理与地理信息科学》 CSCD 北大核心 2007年第6期26-29,共4页
利用C5.0决策树算法对ETM+影像进行信息提取,通过与其他分类方法提取结果的对比,得出C5.0决策树分类算法精度较高。大气校正与数据融合可明显提高分类精度,利用经过NDVI、NDBI、缨帽变换处理后的影像组合数据进行信息提取可进一步提高... 利用C5.0决策树算法对ETM+影像进行信息提取,通过与其他分类方法提取结果的对比,得出C5.0决策树分类算法精度较高。大气校正与数据融合可明显提高分类精度,利用经过NDVI、NDBI、缨帽变换处理后的影像组合数据进行信息提取可进一步提高分类精度。研究发现,C5.0决策树算法用未处理的资料生成决策树的效果较差,而经大气校正和数据融合后计算出NDVI、NDBI及缨帽变换的前3个分量的组合数据生成的决策树深度最小,并且分类精度最高。 展开更多
关键词 c5.0决策树算法 ETM+遥感影像 信息提取
下载PDF
基于Markov-C 5.0的CA城市用地布局模拟预测方法 被引量:14
5
作者 孟成 卢新海 +1 位作者 彭明军 潘琛玲 《中国土地科学》 CSSCI 北大核心 2015年第6期82-88,F0003,共8页
研究目的:针对多用地类别的城市用地模拟预测提出一种科学合理的预测模型,为土地利用总体规划编制和土地利用结构优化调整提供依据和技术方法。研究方法:在分析了城市用地模拟预测中常用方法的优缺点和适用环境后,提出了一种综合采用Mar... 研究目的:针对多用地类别的城市用地模拟预测提出一种科学合理的预测模型,为土地利用总体规划编制和土地利用结构优化调整提供依据和技术方法。研究方法:在分析了城市用地模拟预测中常用方法的优缺点和适用环境后,提出了一种综合采用Markov模型和C 5.0分类算法的城市用地布局模拟预测CA模型,该模型的思想是采用Markov方法获取各类土地之间的流向,结合各类土地规模的预测结果确定用地增长量,采用C 5.0分类算法获取各类土地之间的转换规则,最后以武汉市为例对该方法进行了论证。研究结果:通过该方法模拟的武汉市2012年各类土地的规模和分布总模拟精度达到91.2%,与实际情况高度一致,说明该方法能够很好的模拟武汉市的土地利用规模和布局。研究结论:该方法可以直观的了解各空间因子与转换规则的关系,并能够很好的对城市的未来情况进行模拟预测,还能够了解城市内部各类用地间的作用机理。 展开更多
关键词 土地信息 城市用地模拟 MARKOV c 5.0 元胞自动机
下载PDF
C5.0算法的改进及应用 被引量:11
6
作者 罗丽娟 段隆振 +1 位作者 段文影 刘萍 《南昌大学学报(工科版)》 CAS 2017年第1期92-97,共6页
C5.0算法是一种直观、效率高的分类方法,但该算法存在信息增益率计算复杂、容易出现过拟合和决策树偏倚的问题。针对这些问题,通过公式的转换简化信息增益率的计算过程,在剪枝过程采用了损失矩阵和置信区间的结合进行剪枝判断,以及对建... C5.0算法是一种直观、效率高的分类方法,但该算法存在信息增益率计算复杂、容易出现过拟合和决策树偏倚的问题。针对这些问题,通过公式的转换简化信息增益率的计算过程,在剪枝过程采用了损失矩阵和置信区间的结合进行剪枝判断,以及对建立的多个模型的权重进行调整,提出了一种新的C5.0改进算法,并将其应用于信贷逾期预测上。使用借款人的历史还款数据进行实验,并与其他算法进行比较,结果表明:C5.0改进算法相比其他算法具有更高的准确率和效率。 展开更多
关键词 c5.0算法 信息增益率 置信区间 权重调整 信贷逾期
下载PDF
基于C5.0算法的森林资源变化检测方法研究——以山东省徂徕山林区为例 被引量:11
7
作者 王志慧 李世明 张艺伟 《西北林学院学报》 CSCD 北大核心 2011年第5期185-191,共7页
以山东省徂徕山林场为试验区,利用两时相的TM与ETM+遥感数据对该地区的针叶林、阔叶林等森林资源的变化进行研究。将基于C5.0算法的决策树分类方法应用于森林变化检测,并对3种检测方案进行试验比较:(1)以单一时相图像作为数据源并各自分... 以山东省徂徕山林场为试验区,利用两时相的TM与ETM+遥感数据对该地区的针叶林、阔叶林等森林资源的变化进行研究。将基于C5.0算法的决策树分类方法应用于森林变化检测,并对3种检测方案进行试验比较:(1)以单一时相图像作为数据源并各自分类,分类后作比较提取变化信息;(2)以两时相图像的原始波段数据作为数据源训练规则,并生成变化检测图;(3)以两时相图像加上邻近相关分析图像作为数据源训练规则,生成变化检测图。试验结果表明,基于C5.0算法的决策树分类可以有效的进行森林变化检测,并且加入邻近相关分析图像后的变化检测精度达到最高。 展开更多
关键词 变化检测 c5.0 决策树 邻近相关分析
下载PDF
基于C5.0算法的胃癌生存预测模型研究 被引量:6
8
作者 黄志刚 刘虹 +1 位作者 刘娟 张岐山 《南京信息工程大学学报(自然科学版)》 CAS 2017年第4期406-410,共5页
我国的胃癌发病率高,每年新增胃癌患者占全世界每年新增数量的42%,胃癌成为我国恶性肿瘤防控的重点.本文针对胃癌数据的特征,给出数据预处理和集成方法;采用C5.0分类算法,构建了胃癌生存预测模型,并首次采用美国癌症研究所的SEER数据库... 我国的胃癌发病率高,每年新增胃癌患者占全世界每年新增数量的42%,胃癌成为我国恶性肿瘤防控的重点.本文针对胃癌数据的特征,给出数据预处理和集成方法;采用C5.0分类算法,构建了胃癌生存预测模型,并首次采用美国癌症研究所的SEER数据库进行预测实验.实验结果表明:C5.0预测的精确度、特异性均高于BP-神经网络算法;胃癌患者的出生地点与最终的存活状态之间存在较强的相关性.该研究是数据挖掘技术在医学领域的一个实际应用,对胃癌的临床诊断具有一定的参考价值,可为医生制定合理的治疗和预防方案提供一定参考. 展开更多
关键词 数据挖掘 c5.0分类算法 胃癌 生存预测 SEER数据库
下载PDF
基于ROSE和C5.0算法的打鼾者OSAHS初筛模型 被引量:3
9
作者 杜国栋 吕云辉 +4 位作者 马磊 相艳 邵党国 雷强 胡蓉 《计算机工程与应用》 CSCD 北大核心 2018年第3期250-254,共5页
使用医疗信息系统的数据进行睡眠呼吸暂停低通气综合征(OSAHS)预测和分析过程中,存在不平衡数据问题。为此,在现有临床研究的基础上,提出了一种基于ROSE(Random Over Sampling Examples)和C5.0算法的初筛模型。利用收集到的人体测量学... 使用医疗信息系统的数据进行睡眠呼吸暂停低通气综合征(OSAHS)预测和分析过程中,存在不平衡数据问题。为此,在现有临床研究的基础上,提出了一种基于ROSE(Random Over Sampling Examples)和C5.0算法的初筛模型。利用收集到的人体测量学指标数据,通过数据预处理,删除异常值并填补缺失值。然后采用ROSE算法对数据进行平衡,利用C5.0分类器对平衡后的数据构建筛查模型,通过十则交叉验证的方法检验模型的筛查效果。实验结果表明,使用该模型进行打鼾患者的OSAHS筛查,可以有效地提高筛查效率。 展开更多
关键词 不均衡数据 初筛模型 随机过采样(ROSE) c5.0决策树
下载PDF
基于C5.0与Apriori算法的森林生物量等级评价与因子关联分析 被引量:2
10
作者 王霓虹 高萌 +1 位作者 李丹 刘立臣 《中南林业科技大学学报》 CAS CSCD 北大核心 2015年第3期1-6,共6页
针对生物量影响因子量化研究较少、方法单一及区域生物量评价不足且基于单个树种生物量模型进行评价时工作量过大的问题,以孟家岗林场的三类小班清查数据为基础,选取与生物量水平相关的11个因子,利用C5.0算法进行生物量决策树建模,并进... 针对生物量影响因子量化研究较少、方法单一及区域生物量评价不足且基于单个树种生物量模型进行评价时工作量过大的问题,以孟家岗林场的三类小班清查数据为基础,选取与生物量水平相关的11个因子,利用C5.0算法进行生物量决策树建模,并进一步利用Apriror算法进行生物量强影响因子的关联规则挖掘。结果表明:生物量决策树模型的分类预测精度为88.78%,生物量影响因子的量化结果分别为树高(0.348)、胸径(0.225)、林分类型(0.196)、龄级(0.162)、郁闭度(0.134)、坡度(0.096)、海拔(0.074)、坡向(0.065)、立地类型(0.052)和坡位(0.037);得到707条置信度在80%以上、支持度在10%以上的因子关联规则,揭示了生物量影响因子间的隐含关联关系。建立的生物量决策树模型能为快速的区域生物量预测和评价提供模型参考,建立的关联规则评估模型能够为以碳汇为目标的森林生产与经营提供客观评价指标。 展开更多
关键词 森林生物量评价 生物量影响因子 c5.0算法 APRIORI算法 关联分析
下载PDF
基于多分类器的C5.0决策树植被分类方法 被引量:6
11
作者 刘丹 杨风暴 +2 位作者 卫红 李大威 韩晓峰 《图学学报》 CSCD 北大核心 2017年第5期722-728,共7页
针对光谱角制图(SAM)和最大似然(MLC)分类器对AVIRIS高光谱遥感图像进行植被分类精度均不高的问题,提出了一种基于多分类器的C5.0决策树植被分类方法。首先,利用支持向量机(SVM),进行核函数以及核函数参数选择,提取出AVIRIS高光谱图像... 针对光谱角制图(SAM)和最大似然(MLC)分类器对AVIRIS高光谱遥感图像进行植被分类精度均不高的问题,提出了一种基于多分类器的C5.0决策树植被分类方法。首先,利用支持向量机(SVM),进行核函数以及核函数参数选择,提取出AVIRIS高光谱图像中的植被信息。其次,利用C5.0算法将光谱角制图和最大似然分类器组合,作为决策树的特征属性,学习样本训练并生成分类规则;根据C5.0算法计算植被样本中对应分类器的信息增益率,选择信息增益率最大的属性去分类样本;当叶样本的分类结果满足停止生长的阈值,输出样本分类的结果,否则,回到开始,递归调用以上方法继续分类叶样本,直到所有子集仅包含一个植被类别的样本完成决策。实验结果表明,与光谱角制图和最大似然分类器相比,本文提出的方法整体精度分别提高了6.04%、2.92%,不仅证实了多分类器组合的可行性和有效性,而且更加适用于AVIRIS高光谱图像中的植被调查。 展开更多
关键词 高光谱图像 遥感 SVM SAM MLc c5.0
下载PDF
改进Relief-C5.0的恶意域名检测算法 被引量:5
12
作者 马栋林 张澍寰 赵宏 《计算机工程与应用》 CSCD 北大核心 2022年第11期100-106,共7页
针对目前恶意域名检测算法中分类模型计算复杂度较大、实时性不强以及准确率不高等问题,提出了Rf-C5(Relief-C5.0)恶意域名检测算法模型。提取待测域名的全局URL特征,根据提取的特征按照改进的Relief算法进行权重计算,并依据权重值进行... 针对目前恶意域名检测算法中分类模型计算复杂度较大、实时性不强以及准确率不高等问题,提出了Rf-C5(Relief-C5.0)恶意域名检测算法模型。提取待测域名的全局URL特征,根据提取的特征按照改进的Relief算法进行权重计算,并依据权重值进行优先级排序;选取权重值排名前20的关键特征作为C5.0分类器的输入端,进行合法域名与恶意域名的分类。实验结果表明,在大样本数据集下,Rf-C5模型与当前主流恶意域名检测算法相比,在提高平均检测速率的基础上,检测准确率提高了1.58~4.91个百分点。 展开更多
关键词 恶意域名 URL特征 改进的Relief算法 c5.0分类器
下载PDF
三种分类算法偏差-方差结构的比较:MCLP,LDA和C5.0 被引量:1
13
作者 朱梅红 石勇 +1 位作者 李爱华 张东玲 《中国科学院研究生院学报》 CAS CSCD 北大核心 2009年第4期443-450,共8页
基于Domingos的期望预测误差分解框架,在3个数据集上,对MCLP、LDA和C5.0这3种算法的偏差-方差结构特点进行了比较分析.实验结果表明,一般来说,C5.0呈现低偏差-高方差的特点,LDA与之相反,而MCLP则介于两者之间,比较接近LDA.当训练集样本... 基于Domingos的期望预测误差分解框架,在3个数据集上,对MCLP、LDA和C5.0这3种算法的偏差-方差结构特点进行了比较分析.实验结果表明,一般来说,C5.0呈现低偏差-高方差的特点,LDA与之相反,而MCLP则介于两者之间,比较接近LDA.当训练集样本量较小时,MCLP的偏差和方差都相对较高,而随着训练集的增大,MCLP的偏差和方差明显减小,甚至低于其他两者. 展开更多
关键词 多目标线性规划 线性判别分析 c5.0 偏差 方差
下载PDF
数据挖掘:C5.0决策树算法在警察院校学生体质分析中的应用 被引量:4
14
作者 宋兆铭 叶菁 董如军 《四川体育科学》 2020年第1期52-55,74,共5页
C5.0决策树算法适用于大数据集处理,特别是它的Boosting集成机器学习算法可以有效地将精度较低的"弱学习算法"提升为精度较高的"强学习算法",从而达到模型修剪与优化的目的。研究结果表明:C5.0决策树算法生成的模... C5.0决策树算法适用于大数据集处理,特别是它的Boosting集成机器学习算法可以有效地将精度较低的"弱学习算法"提升为精度较高的"强学习算法",从而达到模型修剪与优化的目的。研究结果表明:C5.0决策树算法生成的模型可以精确地评价学生的体质健康状况(97.8%)且模型预测的泛化能力较强(98.1%)。因此,C5.0决策树算法可以用来判断影响警察院校学生体质测试成绩的关键因素,为深层挖掘相关警务数据内涵与监测提供了实证依据。 展开更多
关键词 c5.0决策树 警察院校 学生体质
下载PDF
基于改进C5.0的元胞自动机模型研究——以土地利用问题为例 被引量:2
15
作者 李立 李红 李彦 《科技和产业》 2017年第11期103-107,共5页
元胞自动机模型是通过局部的相互作用及变化来模拟全局的变化,是复杂结构来源于简单系统的重要体现。元胞自动机模型的核心是转换规则的获取,获取转换规则的方法有多种。建立一种基于改进C5.0决策树的元胞自动机模型,基于属性值的相似性... 元胞自动机模型是通过局部的相互作用及变化来模拟全局的变化,是复杂结构来源于简单系统的重要体现。元胞自动机模型的核心是转换规则的获取,获取转换规则的方法有多种。建立一种基于改进C5.0决策树的元胞自动机模型,基于属性值的相似性对C5.0决策树算法进行改进,以期提高元胞自动机的模拟精度,该模型适用于多种复杂系统的模拟问题研究。最后以土地利用问题为例演示了模型的应用。 展开更多
关键词 改进c5.0决策树 元胞自动机 模型
下载PDF
基于EasyEnsemble和C5.0决策树算法的患者非医嘱离院预测研究 被引量:5
16
作者 李杰 张睿 +1 位作者 芮晨 王欣然 《中国卫生统计》 CSCD 北大核心 2018年第4期593-595,共3页
目的在C5.0决策树算法的基础上,结合处理不平衡样本集的Easy Ensemble思想,建立患者非医嘱离院预测模型,有效识别非医嘱离院倾向患者。方法基于Easy Ensemble思想,通过Bootstrap采样方法抽取多数类样本子集组建多个新的均衡数据样本集,... 目的在C5.0决策树算法的基础上,结合处理不平衡样本集的Easy Ensemble思想,建立患者非医嘱离院预测模型,有效识别非医嘱离院倾向患者。方法基于Easy Ensemble思想,通过Bootstrap采样方法抽取多数类样本子集组建多个新的均衡数据样本集,运用C5.0决策树算法并结合交叉验证方法与代价矩阵,训练多个基分类器,最后经Bagging算法集成,得到最终预测模型。结果在10组测试集下平均总分类准确率、平均平衡准确率、少数类别样本平均召回率和平均AUC值分别达到74.27%、82.34%、91.70%、86.21%。结论基于Easy Ensemble和C5.0决策树算法的患者非医嘱离院预测模型有较好较稳定的识别性能,为医院提升医疗质量和服务水平,降低非医嘱离院率提供了有力依据。 展开更多
关键词 非医嘱离院 EasyEnsemble c5.0 数据挖掘
下载PDF
决策树C5.0与Logistic回归模型对产后腹直肌分离预测性能的比较研究 被引量:3
17
作者 陈小慧 焦子珊 +1 位作者 王娜娜 沙凯辉 《实用临床医药杂志》 2023年第16期115-120,126,共7页
目的比较决策树C5.0与Logistic回归模型对产后腹直肌分离的预测效果。方法选取产后复查的产妇476例作为研究对象。采用问卷调查法获取产妇的一般资料;采用电刺激治疗仪评估盆底肌电值;采用腹部触诊法判断腹直肌分离程度。将所有数据按照... 目的比较决策树C5.0与Logistic回归模型对产后腹直肌分离的预测效果。方法选取产后复查的产妇476例作为研究对象。采用问卷调查法获取产妇的一般资料;采用电刺激治疗仪评估盆底肌电值;采用腹部触诊法判断腹直肌分离程度。将所有数据按照3∶2的比例建立训练集与测试集,运用决策树C5.0及Logistic回归建立产后腹直肌分离的风险预测模型;采用准确度、灵敏度、特异度、约登指数、阴性预测值、阳性预测值和受试者工作特征(ROC)曲线的曲线下面积(AUC)对模型的预测性能进行比较。结果在训练集中,决策树C5.0和Logistic回归模型的准确度分别为96.94%、72.45%,灵敏度分别为98.92%、86.02%,特异度分别为93.52%、49.07%,阳性预测值分别为96.34%、74.42%,阴性预测值分别为98.06%、67.09%,约登指数分别为92.44%、35.10%,AUC分别为0.962、0.675;训练集中,决策树C5.0和Logistic回归模型的AUC比较,差异有统计学意义(P<0.05)。在测试集中,决策树C5.0与Logistic回归模型的准确率分别为81.50%、62.43%,灵敏度分别为88.35%、82.52%,特异度分别为71.43%、32.86%,阳性预测值分别为81.98%、64.39%,阴性预测值分别为80.65%、56.10%,约登指数分别为59.78%、15.38%,AUC分别为0.799、0.577;测试集中,决策树C5.0和Logistic回归模型的AUC比较,差异有统计学意义(P<0.05)。结论决策树C5.0对产后腹直肌分离的预测效能优于Logistic回归模型。 展开更多
关键词 决策树c5.0 LOGISTIc回归模型 产后腹直肌分离 预测模型 曲线下面积
下载PDF
基于C5.0决策树的船舶交通事故致因分析模型及应用 被引量:5
18
作者 黄常海 沈佳 +3 位作者 朱冉超 齐绪存 郑菲 陆浩 《中国安全科学学报》 CAS CSCD 北大核心 2022年第10期90-99,共10页
为减少船舶交通事故的发生,对船舶交通事故的致因展开研究。首先,以事故类型作为输出变量,以船舶交通事故数据为样本,构建基于C5.0算法的船舶交通事故致因路径分析模型;然后,确定事故致因路径分析有效性评价指标;再次,运用“2-4”模型(2... 为减少船舶交通事故的发生,对船舶交通事故的致因展开研究。首先,以事故类型作为输出变量,以船舶交通事故数据为样本,构建基于C5.0算法的船舶交通事故致因路径分析模型;然后,确定事故致因路径分析有效性评价指标;再次,运用“2-4”模型(24Model),对所识别出的不同类型事故致因路径因果关系进一步分析,提出通过切断事故潜在致因路径的船舶交通事故预控措施;最后,将894起船舶交通事故数据样本随机分为80%的训练集和20%的测试集,应用所提出的模型进行分析。结果表明:所提出的模型可以生成不同类型事故的分类规则集,模型分类正确率达到90%以上,且模型具有强的泛化能力。结合分类规则集构建的船舶交通事故致因链为船舶交通事故的防范提供定量化的理论依据。 展开更多
关键词 c5.0算法 决策树 船舶交通事故 致因路径 致因分析 “2-4”模型(24Model)
下载PDF
基于OpenGL的C++Builder5.0三维图形处理 被引量:2
19
作者 方忆湘 黄凤山 鹿天宝 《河北工业科技》 CAS 2003年第3期14-19,共6页
OpenGL是近年来发展迅速的一个性能卓越的三维图形标准,在许多领域得到了广泛的关注和应用。本文结合应用CAD软件的开发,介绍了在C++Builder5.0和Windows环境下,采用OpenGL构造三维图形的基本操作和图形绘制过程,对其主要细节实现进行... OpenGL是近年来发展迅速的一个性能卓越的三维图形标准,在许多领域得到了广泛的关注和应用。本文结合应用CAD软件的开发,介绍了在C++Builder5.0和Windows环境下,采用OpenGL构造三维图形的基本操作和图形绘制过程,对其主要细节实现进行了详细的探讨。 展开更多
关键词 OPENGL c++BUILDER5.0 三维图形构造 cAD 三维图形标准
下载PDF
基于Boosting算法的C5.0决策树不平衡数据分类算法 被引量:2
20
作者 王植 张珏 《河南科学》 2023年第1期7-12,共6页
为了改进不平衡数据的分类性能,提出一种可自动确定迭代参数trail值的集成C5.0决策树算法.首先,算法引入boosting集成框架到C5.0决策树算法中,从而生成新的集成分类器;其次,算法使用网格搜索法在一定范围内自动确定trail参数的值.实验... 为了改进不平衡数据的分类性能,提出一种可自动确定迭代参数trail值的集成C5.0决策树算法.首先,算法引入boosting集成框架到C5.0决策树算法中,从而生成新的集成分类器;其次,算法使用网格搜索法在一定范围内自动确定trail参数的值.实验结果表明,该算法在不平衡数据上的分类性能指标G-mean和MCC上具有优势. 展开更多
关键词 类不平衡问题 集成算法 c5.0决策树算法 网格搜索算法
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部