Hepatitis C virus(HCV) is the leading indication for liver transplantation in the United States.It recurs universally after transplant but the rate of fibrosis and the development of graft failure is variable.Differen...Hepatitis C virus(HCV) is the leading indication for liver transplantation in the United States.It recurs universally after transplant but the rate of fibrosis and the development of graft failure is variable.Different donor and recipient features have been demonstrated to impact fibrosis.Plasma cell hepatitis,a histologic finding,is one feature associated with poor graft and patient outcomes.The pathogenic mechanism resulting in plasma cell hepatitis is poorly understood,with evidence suggesting a role for both the HCV and the immune system.A recent publication described plasma cell hepatitis in a larger context of immune medicated graft dysfunction in transplant recipients receiving interferon based therapy.This manuscript will highlight the topic of plasma cell hepatitis and provide commentary on the lack of recognition,the data regarding pathophysiologic mechanisms and the potential management options.展开更多
Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed ...Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed by SEM. Raman spectrometer wasused to characterize the quality of diamond films. The IR transmittivity measured by IR spectrometer is close to the theoretical value ofabout 71% in the far infrared band. The thermal conductivity measured by photothermal deflection exceeds 18 W/cm' K. <l 10> is thepreferential growth orientation of the films detected by X-ray diffractometer. As s result, the extremely high temperature of DC arc plasma jet can produce supersaturated atomic hydrogen, which played an important role in the process for the deposition of high quality diamond films.展开更多
Objective Assessment of the comprehensive relationship among apolipoprotein CIII(apoCⅢ) levels, inflammation, and metabolic disorders is rare. Methods A total of 1455 consecutive patients not treated with lipid-low...Objective Assessment of the comprehensive relationship among apolipoprotein CIII(apoCⅢ) levels, inflammation, and metabolic disorders is rare. Methods A total of 1455 consecutive patients not treated with lipid-lowering drugs and undergoing coronary angiography were enrolled in this cross-sectional study. A mediation analysis was used to detect the underlying role of apoCⅢ in the association of inflammation with metabolic syndrome(MetS). Results Patients with MetS showed higher levels of apoCⅢ [95.1(73.1-131.4) vs. 81.7(58.6-112.4) μg/mL, P 〈 0.001] and inflammatory markers [high sensitivity C-reactive protein, 1.7(0.8-3.4) vs. 1.1(0.5-2.2) mg/L; white blood cell count,(6.48 ± 1.68) vs.(6.11 ± 1.67) × 10~9/L]. The levels of apoCⅢ and inflammatory markers increased with the number of metabolic risk components(all P 〈 0.001). Furthermore, apoCⅢ levels were associated with virtually all individual MetS risk factors and inflammatory markers(all P 〈 0.05). Importantly, the prevalence of MetS in each metabolic disorder rose as apoCⅢ levels increased(all P 〈 0.05). Mediation analysis showed that apoCⅢ partially mediated the effect of inflammation on MetS independently from triglycerides. Conclusion Plasma apoCⅢ levels were significantly associated with the development and severity of MetS, and a role of apoCⅢ in the effect of inflammation on the development of MetS was identified.展开更多
In order to increase the positive detection rate of HCV RNA in the patients with chronic hepatitis C , RT PCR was used to synchronously detect HCV RNA in the plasma and peripheral blood mononuclear cells of 583 CHC ...In order to increase the positive detection rate of HCV RNA in the patients with chronic hepatitis C , RT PCR was used to synchronously detect HCV RNA in the plasma and peripheral blood mononuclear cells of 583 CHC patients with a continuously elevated level of ALT for more than one year. The results showed that the positive detection rate of HCV RNA in the plasma of the CHC patients was 19.2 %, while 24.5 % in PBMC. It was demonstrated that the positive detection rate for HCV RNA in PBMC was obviously higher than that detected in plasma. To synchronously detect HCV RNA in PBMC by using RT PCR can increase the positive detection rate of HCV RNA in the CHC patients.展开更多
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T...C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.展开更多
The formation of SiC through the interface reaction between C60 and Si in a plasmaassisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition...The formation of SiC through the interface reaction between C60 and Si in a plasmaassisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition and structure of the deposited samples were characterized by micro-Raman spectroscopy and X-ray diffraction (XRD). The results showed that SiC film was formed successfully in hydrogen plasma at a substrate temperature of 800℃ . The hydrogen atoms in plasma were found to enhance the production of SiC. Furthermore, the effects of the added CH4 on the formation of film were studied. Introduction of CH4 simultaneously with H2 at the beginning would suppress the formation of the initial layer of SiC due to a carbon-rich environment on the substrate, which would be disadvantageous to the further growth of the SiC film.展开更多
The present study evaluated the effect of non-thermal plasma on skin wound healing in BalB/c mice.Two 6-mm wounds along the both sides of the spine were created on the back of each mouse(n=80) by using a punch biops...The present study evaluated the effect of non-thermal plasma on skin wound healing in BalB/c mice.Two 6-mm wounds along the both sides of the spine were created on the back of each mouse(n=80) by using a punch biopsy.The mice were assigned randomly into two groups,with 40 animals in each group:a non-thermal plasma group in which the mice were treated with the non-thermal plasma;a control group in which the mice were left to heal naturally.Wound healing was evaluated on postoperative days(POD) 4,7,10 and 14(n=5 per group in each POD) by percentage of wound closure.The mice was euthanized on POD 1,4,7,10,14,21,28 and 35(n=1 in each POD).The wounds were removed,routinely fixed,paraffin-embedded,sectioned and HE-stained.A modified scoring system was used to evaluate the wounds.The results showed that acute inflammation peaked on POD 4 in non-thermal plasma group,earlier than in control group in which acute inflammation reached a peak on POD 7,and the acute inflammation scores were much lower in non-thermal group than in control group on POD 7(P0.05).The amount of granular tissue was greater on POD 4 and 7 in non-thermal group than in control group(P0.05).The re-epithelialization score and the neovasularization score were increased significantly in non-thermal group when compared with control group on POD 7 and 10(P0.05 for all).The count of bacterial colonies was 103 CFU/mL on POD 4 and 20 CFU/mL on POD 7,significantly lower than that in control group(109 CFU/mL on POD 4 and 1012 CFU/mL on the POD 7)(P0.05).It was suggested that the non-thermal plasma facilitates the wound healing by suppressing bacterial colo-nization.展开更多
It has been found that cold plasma is a facile and environmentally benign method for synthesizing supported metal catalysts, and great efforts have been devoted to enlarging its applications. However, little work has ...It has been found that cold plasma is a facile and environmentally benign method for synthesizing supported metal catalysts, and great efforts have been devoted to enlarging its applications. However, little work has been done to disclose the influence mechanism, which is significant for controllable synthesis. In this work, hydrogen cold plasma was adopted to synthesize a palladium catalyst supported on activated carbon (Pd/C-P) using HzPdC14 as a Pd precursor followed by calcination in hydrogen gas to remove the chlorine ions. The Pd/C-P catalyst was found to be made of larger Pd nanoparticles showing a decreased migration to the support outer surface than that prepared by the conventional thermal hydrogen reduction method (Pd/C-C). Meanwhile, the pore diameter of the activated carbon support is small (,-~4 nm). Therefore, Pd/C-P exhibits lower CO oxidation activity than Pd/C-C. It was proposed that the strong interaction between the activated carbon and PdC142-, and the enhanced metal-support interaction caused by hydrogen cold plasma reduction made it difficult for Pd nanoparticles to migrate to the support outer surface. The larger-sized Pd nanoparticles for Pd/C-P may be due to the Coulomb interaction resulting in the disturbance of the metal-support interaction. This work has important guiding significance for the controllable synthesis of supported metal catalysts by hydrogen cold plasma.展开更多
objective:To seek a good method for plasma disinfection to solve the serious problem of viral con tamination of blood and blood products. Methods: A model of plasma disinfection was established by using ultraviolet C ...objective:To seek a good method for plasma disinfection to solve the serious problem of viral con tamination of blood and blood products. Methods: A model of plasma disinfection was established by using ultraviolet C (UVC) irradiation and cross-linked starch iodine (CSI) treatment to kill Sindbis virus (SV). The efficacy of plasma virus inactivation was measured by assay of cell infection. The plasma IgG activity was surveyed using different immunohistochemical assays. Results: After being irradiated by 986O J/m2 UVC fol lowed by passage through a column of CSl with a velocity of 0. 25 ml/min, the SV in plasma was reduced to 6. 8 log. No significant inhibition of the activities of the antigen and antibody of IgG were found in the plas ma. Couclusion: The use of UVC in combination with CSI can effectively inactivate SV in the plasma. Thus it is a useful measure for the disinfection of blood products.展开更多
By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for...By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.展开更多
Fe-Cr-Ti-C composite powder was synthesized by precursor carbonization-composition process using the mixture of ferrotitanium, chromium, iron powder and precursor sucrose as raw material. And then the Fe-Cr-Ti-C coati...Fe-Cr-Ti-C composite powder was synthesized by precursor carbonization-composition process using the mixture of ferrotitanium, chromium, iron powder and precursor sucrose as raw material. And then the Fe-Cr-Ti-C coating was prepared by reactive plasma cladding method. Microstructure of the samples was observed by scanning electron microscope (SEM), the phases were determined by X-ray diffraction (XRD), and the wear resistance was evaluated under dry sliding wear test conditions at room temperature. Results indicate that the composite coating consists of primary austenite and dendritic eutectic austenite, chrysanthemum-shaped eutectic (Cr, Fe ) 7 C3 and TiC carbide. TiC presents the gradient distribution and different shapes in the coating, corresponding to equiaxial structure both in fusion zone and central zone, while it presents dendritic structure on the surface, respectively. The wear mass loss is insensitive to load for the coating while it increases rapidly for Q235 steel base metal in this test. The wear mass loss ofQ235 steel is 14 times as that of the composite coating under applied load of 40 kg.展开更多
Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the sampl...Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the samples fabricated by SPS were compared with those of thesamples sintered by VS using optical microscopy, scanning electron microscopy, universal testingmachine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainlyin the range of 1000-1300 deg C during the VS process, and only a 0.2 percent linear shrinkage ratioappeared below 800 deg C; during the SPS process, a 60 percent dimensional change occurred below800 deg C as a result of pressure action. (2) By utilizing the SPS technique, it is difficult forobtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and un-combinedcarbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones byVS. (3) grain size of the samples sintered by SPS is still below 0.5 urn, but not by VS; because oflow sintering temperature, there are no typical core/rim structures formed in the sintered samplesby SPS1; the main microstructures of the sintered samples by SPS2 are a white core/grey shellstructure, whereas by VS show a typical black core/grey shell structure.展开更多
Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanni...Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanning electron microscopy (SEM),X-ray diffraction (XRD),and differential scanning calorimeter (DSC).It is found that the spark plasma sintering properties of Ti(C,N)-based cermet differ from those of conventional vacuum sintering.The liquid phase appearance is at least lower by 150℃ than that in vacuum sintering.The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃,and afterwards it almost keeps invariable and no longer increases.SPS remarkably accelerates the phase transformation of Ti(C,N)-based cermet and it has a powerful ability to remove oxides in Ti(C,N)-based cermets.Above 1 350℃,denitrification occurred.Fresh graphite phase formed above 1 430℃.Both the porosity and graphite are responsible for the poor TRS.展开更多
文摘Hepatitis C virus(HCV) is the leading indication for liver transplantation in the United States.It recurs universally after transplant but the rate of fibrosis and the development of graft failure is variable.Different donor and recipient features have been demonstrated to impact fibrosis.Plasma cell hepatitis,a histologic finding,is one feature associated with poor graft and patient outcomes.The pathogenic mechanism resulting in plasma cell hepatitis is poorly understood,with evidence suggesting a role for both the HCV and the immune system.A recent publication described plasma cell hepatitis in a larger context of immune medicated graft dysfunction in transplant recipients receiving interferon based therapy.This manuscript will highlight the topic of plasma cell hepatitis and provide commentary on the lack of recognition,the data regarding pathophysiologic mechanisms and the potential management options.
文摘Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed by SEM. Raman spectrometer wasused to characterize the quality of diamond films. The IR transmittivity measured by IR spectrometer is close to the theoretical value ofabout 71% in the far infrared band. The thermal conductivity measured by photothermal deflection exceeds 18 W/cm' K. <l 10> is thepreferential growth orientation of the films detected by X-ray diffractometer. As s result, the extremely high temperature of DC arc plasma jet can produce supersaturated atomic hydrogen, which played an important role in the process for the deposition of high quality diamond films.
基金partially supported by the Capital Special Foundation of Clinical Application Research(Z121107001012015)the Capital Health Development Fund(2011400302,201614035)+1 种基金the Beijing Natural Science Foundation(7131014)CAMS Major Collaborative Innovation Project(2016-I2M-1-011)
文摘Objective Assessment of the comprehensive relationship among apolipoprotein CIII(apoCⅢ) levels, inflammation, and metabolic disorders is rare. Methods A total of 1455 consecutive patients not treated with lipid-lowering drugs and undergoing coronary angiography were enrolled in this cross-sectional study. A mediation analysis was used to detect the underlying role of apoCⅢ in the association of inflammation with metabolic syndrome(MetS). Results Patients with MetS showed higher levels of apoCⅢ [95.1(73.1-131.4) vs. 81.7(58.6-112.4) μg/mL, P 〈 0.001] and inflammatory markers [high sensitivity C-reactive protein, 1.7(0.8-3.4) vs. 1.1(0.5-2.2) mg/L; white blood cell count,(6.48 ± 1.68) vs.(6.11 ± 1.67) × 10~9/L]. The levels of apoCⅢ and inflammatory markers increased with the number of metabolic risk components(all P 〈 0.001). Furthermore, apoCⅢ levels were associated with virtually all individual MetS risk factors and inflammatory markers(all P 〈 0.05). Importantly, the prevalence of MetS in each metabolic disorder rose as apoCⅢ levels increased(all P 〈 0.05). Mediation analysis showed that apoCⅢ partially mediated the effect of inflammation on MetS independently from triglycerides. Conclusion Plasma apoCⅢ levels were significantly associated with the development and severity of MetS, and a role of apoCⅢ in the effect of inflammation on the development of MetS was identified.
文摘In order to increase the positive detection rate of HCV RNA in the patients with chronic hepatitis C , RT PCR was used to synchronously detect HCV RNA in the plasma and peripheral blood mononuclear cells of 583 CHC patients with a continuously elevated level of ALT for more than one year. The results showed that the positive detection rate of HCV RNA in the plasma of the CHC patients was 19.2 %, while 24.5 % in PBMC. It was demonstrated that the positive detection rate for HCV RNA in PBMC was obviously higher than that detected in plasma. To synchronously detect HCV RNA in PBMC by using RT PCR can increase the positive detection rate of HCV RNA in the CHC patients.
基金Funded by the National Natural Science Foundation of China (No.50771070)Project Innovation of the Graduate Students of Shanxi Province(No.20093038)
文摘C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.
基金the National Natural Science Foundation of China(Nos.50472010,10635010)
文摘The formation of SiC through the interface reaction between C60 and Si in a plasmaassisted chemical vapour deposition system (PACVD) is investigated with a C60 film previously deposited on Si wafers. The composition and structure of the deposited samples were characterized by micro-Raman spectroscopy and X-ray diffraction (XRD). The results showed that SiC film was formed successfully in hydrogen plasma at a substrate temperature of 800℃ . The hydrogen atoms in plasma were found to enhance the production of SiC. Furthermore, the effects of the added CH4 on the formation of film were studied. Introduction of CH4 simultaneously with H2 at the beginning would suppress the formation of the initial layer of SiC due to a carbon-rich environment on the substrate, which would be disadvantageous to the further growth of the SiC film.
基金supported by grants from the National Natural Sciences Foundation of China(Nos.10875048,30700717)
文摘The present study evaluated the effect of non-thermal plasma on skin wound healing in BalB/c mice.Two 6-mm wounds along the both sides of the spine were created on the back of each mouse(n=80) by using a punch biopsy.The mice were assigned randomly into two groups,with 40 animals in each group:a non-thermal plasma group in which the mice were treated with the non-thermal plasma;a control group in which the mice were left to heal naturally.Wound healing was evaluated on postoperative days(POD) 4,7,10 and 14(n=5 per group in each POD) by percentage of wound closure.The mice was euthanized on POD 1,4,7,10,14,21,28 and 35(n=1 in each POD).The wounds were removed,routinely fixed,paraffin-embedded,sectioned and HE-stained.A modified scoring system was used to evaluate the wounds.The results showed that acute inflammation peaked on POD 4 in non-thermal plasma group,earlier than in control group in which acute inflammation reached a peak on POD 7,and the acute inflammation scores were much lower in non-thermal group than in control group on POD 7(P0.05).The amount of granular tissue was greater on POD 4 and 7 in non-thermal group than in control group(P0.05).The re-epithelialization score and the neovasularization score were increased significantly in non-thermal group when compared with control group on POD 7 and 10(P0.05 for all).The count of bacterial colonies was 103 CFU/mL on POD 4 and 20 CFU/mL on POD 7,significantly lower than that in control group(109 CFU/mL on POD 4 and 1012 CFU/mL on the POD 7)(P0.05).It was suggested that the non-thermal plasma facilitates the wound healing by suppressing bacterial colo-nization.
基金supported by National Natural Science Foundation of China (Grant Nos. 11505019, 21673026)Dalian Youth Science and Technology Project (Grant No. 2015R089)
文摘It has been found that cold plasma is a facile and environmentally benign method for synthesizing supported metal catalysts, and great efforts have been devoted to enlarging its applications. However, little work has been done to disclose the influence mechanism, which is significant for controllable synthesis. In this work, hydrogen cold plasma was adopted to synthesize a palladium catalyst supported on activated carbon (Pd/C-P) using HzPdC14 as a Pd precursor followed by calcination in hydrogen gas to remove the chlorine ions. The Pd/C-P catalyst was found to be made of larger Pd nanoparticles showing a decreased migration to the support outer surface than that prepared by the conventional thermal hydrogen reduction method (Pd/C-C). Meanwhile, the pore diameter of the activated carbon support is small (,-~4 nm). Therefore, Pd/C-P exhibits lower CO oxidation activity than Pd/C-C. It was proposed that the strong interaction between the activated carbon and PdC142-, and the enhanced metal-support interaction caused by hydrogen cold plasma reduction made it difficult for Pd nanoparticles to migrate to the support outer surface. The larger-sized Pd nanoparticles for Pd/C-P may be due to the Coulomb interaction resulting in the disturbance of the metal-support interaction. This work has important guiding significance for the controllable synthesis of supported metal catalysts by hydrogen cold plasma.
文摘objective:To seek a good method for plasma disinfection to solve the serious problem of viral con tamination of blood and blood products. Methods: A model of plasma disinfection was established by using ultraviolet C (UVC) irradiation and cross-linked starch iodine (CSI) treatment to kill Sindbis virus (SV). The efficacy of plasma virus inactivation was measured by assay of cell infection. The plasma IgG activity was surveyed using different immunohistochemical assays. Results: After being irradiated by 986O J/m2 UVC fol lowed by passage through a column of CSl with a velocity of 0. 25 ml/min, the SV in plasma was reduced to 6. 8 log. No significant inhibition of the activities of the antigen and antibody of IgG were found in the plas ma. Couclusion: The use of UVC in combination with CSI can effectively inactivate SV in the plasma. Thus it is a useful measure for the disinfection of blood products.
文摘By means of optical microscope , scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick. When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2. Graphite exists in band-like shape.
基金Supported by Natural Science Foundation of Shandong Province (No. ZR2011EMM017 ).
文摘Fe-Cr-Ti-C composite powder was synthesized by precursor carbonization-composition process using the mixture of ferrotitanium, chromium, iron powder and precursor sucrose as raw material. And then the Fe-Cr-Ti-C coating was prepared by reactive plasma cladding method. Microstructure of the samples was observed by scanning electron microscope (SEM), the phases were determined by X-ray diffraction (XRD), and the wear resistance was evaluated under dry sliding wear test conditions at room temperature. Results indicate that the composite coating consists of primary austenite and dendritic eutectic austenite, chrysanthemum-shaped eutectic (Cr, Fe ) 7 C3 and TiC carbide. TiC presents the gradient distribution and different shapes in the coating, corresponding to equiaxial structure both in fusion zone and central zone, while it presents dendritic structure on the surface, respectively. The wear mass loss is insensitive to load for the coating while it increases rapidly for Q235 steel base metal in this test. The wear mass loss ofQ235 steel is 14 times as that of the composite coating under applied load of 40 kg.
基金This work was financially supported by the National Natural Science Foundation of China (No.50074017), the Natural Sci-ence Foundation of Hubei Province (No.2003ABA092) and the Doctoral Education Fundation of China (No.1999048714).
文摘Spark plasma sintering (SPS) and conventional vacuum sintering (VS) wereemployed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstracture, andporosity and mechanical properties of the samples fabricated by SPS were compared with those of thesamples sintered by VS using optical microscopy, scanning electron microscopy, universal testingmachine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainlyin the range of 1000-1300 deg C during the VS process, and only a 0.2 percent linear shrinkage ratioappeared below 800 deg C; during the SPS process, a 60 percent dimensional change occurred below800 deg C as a result of pressure action. (2) By utilizing the SPS technique, it is difficult forobtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and un-combinedcarbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones byVS. (3) grain size of the samples sintered by SPS is still below 0.5 urn, but not by VS; because oflow sintering temperature, there are no typical core/rim structures formed in the sintered samplesby SPS1; the main microstructures of the sintered samples by SPS2 are a white core/grey shellstructure, whereas by VS show a typical black core/grey shell structure.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 0 74 0 17)andStateKeyLaboratoryofAdvancedTechnol ogyforMaterialsSynthesisandProcessingofWuhanUniversityofTechnology
文摘Ultrafine Ti(C,N)-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties,such as porosity,mechanical properties and phase transformation,were investigated by optical microscopy (OM),scanning electron microscopy (SEM),X-ray diffraction (XRD),and differential scanning calorimeter (DSC).It is found that the spark plasma sintering properties of Ti(C,N)-based cermet differ from those of conventional vacuum sintering.The liquid phase appearance is at least lower by 150℃ than that in vacuum sintering.The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃,and afterwards it almost keeps invariable and no longer increases.SPS remarkably accelerates the phase transformation of Ti(C,N)-based cermet and it has a powerful ability to remove oxides in Ti(C,N)-based cermets.Above 1 350℃,denitrification occurred.Fresh graphite phase formed above 1 430℃.Both the porosity and graphite are responsible for the poor TRS.