Because the efficiency of biological nutrient removal is always limited by the deficient carbon source for the low carbon/nitrogen(C/N)ratio in real domestic sewage,the denitrifying phosphorus removal(DNPR)was develop...Because the efficiency of biological nutrient removal is always limited by the deficient carbon source for the low carbon/nitrogen(C/N)ratio in real domestic sewage,the denitrifying phosphorus removal(DNPR)was developed as a simple and efficient method to remove nitrogen and phosphorous.In addition,this method has the advantage of saving aeration energy while reducing the sludge production.In this context,a pre-denitrification anaerobic/anoxic/post-aeration+nitrification sequence batch reactor(pre-A_(2)NSBR)system,which could also reduce high ammonia effluent concentration in the traditional two-sludge DNPR process,is proposed in this work.The pre-A_(2)NSBR process was mainly composed of a DNPR SBR and a nitrifying SBR,operating as alternating anaerobic/anoxic/post-aeration+nitrification sequence.Herein,the long-term performance of different nitrate recycling ratios(0-300%)and C/N ratios(2.5-8.8),carbon source type,and functional microbial community were studied.The results showed that the removal efficiency of total inorganic nitrogen(TIN,including NH4^(+)-N,NO_(2)^(-)-N,and NO_(3)^(-)-N)gradually increased with the nitrate recycling ratios,and the system reached the highest DNPR efficiency of 94.45% at the nitrate recycling ratio of 300%.The optimum C/N ratio was around 3.9-7.3 with a nitrogen and phosphorus removal efficiency of 80.15%and 93.57%,respectively.The acetate was proved to be a high-quality carbon source for DNPR process.The results of fluorescence in situ hybridization(FISH)analysis indicated that nitrifiers and phosphorus accumulating organisms(PAOs)were accumulated with a proportion of 19.41%and 26.48%,respectively.展开更多
[ Objective] The research aimed to study influence of different C/N ratios on aerobic denitdfication characteristics of the strain. [ Method] 5 aerobic denitdfying bacteria were isolated from activated sludge at low t...[ Objective] The research aimed to study influence of different C/N ratios on aerobic denitdfication characteristics of the strain. [ Method] 5 aerobic denitdfying bacteria were isolated from activated sludge at low temperature and low C/N ratio, and their denitdfication capabilities were verified. Influence of different C/N ratios on denitdfication capability of the strain was determined. [ Result] In the five isolated aerobic denitdf- ying bacteria, except HFX08 was G-, HFX00, HFX01, HFX12 and HFX13 were G +. HFX08 belonged to Pseudomonas, and other strains be- longed to Acinetobacter. As C/N ratio increased, denitdfication velocity increased, and the highest removal rate of nitrogen for the five strains could reach over 92%. [ Conclusion] The research could provide reference for design and operation of the sewage treatment process with low C/N ratio in winter in the north.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51578014)the 111 Project(D16003)the Funding Projects Beijing of Municipal Commission of Education.
文摘Because the efficiency of biological nutrient removal is always limited by the deficient carbon source for the low carbon/nitrogen(C/N)ratio in real domestic sewage,the denitrifying phosphorus removal(DNPR)was developed as a simple and efficient method to remove nitrogen and phosphorous.In addition,this method has the advantage of saving aeration energy while reducing the sludge production.In this context,a pre-denitrification anaerobic/anoxic/post-aeration+nitrification sequence batch reactor(pre-A_(2)NSBR)system,which could also reduce high ammonia effluent concentration in the traditional two-sludge DNPR process,is proposed in this work.The pre-A_(2)NSBR process was mainly composed of a DNPR SBR and a nitrifying SBR,operating as alternating anaerobic/anoxic/post-aeration+nitrification sequence.Herein,the long-term performance of different nitrate recycling ratios(0-300%)and C/N ratios(2.5-8.8),carbon source type,and functional microbial community were studied.The results showed that the removal efficiency of total inorganic nitrogen(TIN,including NH4^(+)-N,NO_(2)^(-)-N,and NO_(3)^(-)-N)gradually increased with the nitrate recycling ratios,and the system reached the highest DNPR efficiency of 94.45% at the nitrate recycling ratio of 300%.The optimum C/N ratio was around 3.9-7.3 with a nitrogen and phosphorus removal efficiency of 80.15%and 93.57%,respectively.The acetate was proved to be a high-quality carbon source for DNPR process.The results of fluorescence in situ hybridization(FISH)analysis indicated that nitrifiers and phosphorus accumulating organisms(PAOs)were accumulated with a proportion of 19.41%and 26.48%,respectively.
基金Special Funds for Environmental Protection of the Governmental Public Industry Research,China(200909043)
文摘[ Objective] The research aimed to study influence of different C/N ratios on aerobic denitdfication characteristics of the strain. [ Method] 5 aerobic denitdfying bacteria were isolated from activated sludge at low temperature and low C/N ratio, and their denitdfication capabilities were verified. Influence of different C/N ratios on denitdfication capability of the strain was determined. [ Result] In the five isolated aerobic denitdf- ying bacteria, except HFX08 was G-, HFX00, HFX01, HFX12 and HFX13 were G +. HFX08 belonged to Pseudomonas, and other strains be- longed to Acinetobacter. As C/N ratio increased, denitdfication velocity increased, and the highest removal rate of nitrogen for the five strains could reach over 92%. [ Conclusion] The research could provide reference for design and operation of the sewage treatment process with low C/N ratio in winter in the north.