Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identi...Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.展开更多
Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play...Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.展开更多
To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable is...To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.展开更多
This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS...This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.展开更多
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-tren...The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.展开更多
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, c...The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.展开更多
基金Supported by projects of the National Natural Science Foundatio n of China(Nos.41972313,41790453).
文摘Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.
基金sponsored by the National Science and Technology Major Project(No.2011ZX05023-005-006)
文摘Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.
基金support granted to carry out the research,and for the funding,Dr.Graciela Herrera Zamarron,responsible for the project with Contract number 0266-1O-ED-F-DGAT-UNAM-2-19-1928.
文摘To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.
基金The ATLAS project is primarily funded to search for near-earth asteroids through NASA grants NN12AR55G,80NSSC18K0284,and 80NSSC18K1575funded by Kepler/K2 grant J1944/80NSSC19K0112 and HST GO-15889,and STFC grants ST/T000198/1 and ST/S006109/1。
文摘This work analyzes the photometric data of the Oort spike comets C/2019 L3(ATLAS)and C/2019 O3(Palomar)obtained between 2016 and 2023 by the ATLAS network and the Belgian Olmen Observatory.The comets Palomar and ATLAS have a typical and unusually high activity level,respectively,based on the Afρparameter corrected to phase angle zero at perihelion.The absolute magnitude of comets ATLAS and Palomar in the o-band is 4.71±0.05 and 4.16±0.02 respectively.The cometary activity of comets ATLAS and Palomar probably began at r>13 au before perihelion and will end at r>14 au after perihelion,which means that they could remain active until the second half of 2026.The nucleus of comet ATLAS has a minimum radius of 7.9 km,and the nucleus of comet Palomar could be a little larger.The c-o colors of the comets ATLAS and Palomar are redder and bluer,respectively,at perihelion than the solar twin YBP 1194.These comets showed a bluish trend in the coma color with decreasing heliocentric distance.Comet Palomar probably had two outbursts after its perihelion,each releasing about 10^(8)kg of dust.The slopes of the photometric profile of the comae of these comets were between 1and 1.5,indicating a steady state during the observation campaign.
基金financially supported by the National Basic Research Program of China(973 Program,No. 2014CB440905)the Key Program of National Natural Science Foundation(No.41430315)the National Natural Science Foundation of China(Nos.41272111 and 41163001)
文摘The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.
基金funded by the China Geological Survey (No. 1212011220731)
文摘The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ13C values of the calcite samples range from-2.5‰ to 2.3‰, the δ18OH2 Oand δDVSMOWvalues of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ13C, δ18OH2 Oand δDV-SMOWvalues of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ34SV-CDTvalues of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields206Pb/204Pb,207Pb/204Pb, and208Pb/204Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.