●AIM:To investigate the underlying mechanism of dry environment(autumn dryness)affecting the lacrimal glands in rats.●METHODS:Twenty Sprague-Dawley rats were randomly divided into two groups.The rats were fed in spe...●AIM:To investigate the underlying mechanism of dry environment(autumn dryness)affecting the lacrimal glands in rats.●METHODS:Twenty Sprague-Dawley rats were randomly divided into two groups.The rats were fed in specific pathogen free environment as the control group(n=10),and the rats fed in dry environment as the dryness group(n=10).After 24d,lacrimal glands were collected from the rats.The tissues morphology was observed by hematoxylineosin(HE)staining.Tandem mass tags(TMT)quantitative proteomics analysis technology was used to screen the differential expressed proteins of lacrimal glands between the two groups,then bioinformatics analysis was performed.Further,the immunohistochemical(IHC)method was used to verify the target proteins.●RESULTS:In dryness group,the lacrimal glands lobule atrophied,the glandular cavities enlarged,the sparse nuclear distribution and scattered inflammatory infiltration between the acinus were observed.The proteomics exhibited that a total of 195 up-regulated and 236 downregulated differential expressed proteins screened from the lacrimal glands of rats.It was indicated that the biological processes(BP)of differential expressed proteins mainly included cell processes and single BP.The cellular compositions of differential expressed proteins mainly located in cells,organelles.The molecular functions of differential expressed proteins mainly included binding,catalytic activity.Moreover,the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis showed that the differential expressed proteins mainly involved lysosome,complement and coagulation cascade,and ribosome pathway.The IHC result verified that the up-regulated expression proteins of Protein S100A9(S100A9),Annexin A1(Anxa1),and Clusterin(Clu)in lacrimal glands of rats in dryness group were higher than control group.●CONCLUSION:The up-regulated expression proteins of S100A9,Anxa1,and Clu may be the potential mechanisms of dry eye symptoms caused by dry environment.This study provides clues of dry environments causing eye-related diseases for further studies.展开更多
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu...Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.展开更多
Carbon-based N-coordinated Mn(Mn-N_(x)/C)single-atom electrocatalysts are considered as one of the most desirable non-precious oxygen reduction reaction(ORR)candidates due to their insignificant Fenton reactivity,high...Carbon-based N-coordinated Mn(Mn-N_(x)/C)single-atom electrocatalysts are considered as one of the most desirable non-precious oxygen reduction reaction(ORR)candidates due to their insignificant Fenton reactivity,high abundance,and intriguing electrocatalytic performance.However,current MnN_(x)/C single-atom electrocatalysts suffer from high overpotentials because of their low intrinsic activity and unsatisfactory chemical stability.Herein,through an in-situ polymerization-assisted pyrolysis,the Co as a second metal is introduced into the Mn-N_(x)/C system to construct Co,Mn-N_(x)dual-metallic sites,which atomically disperse in N-doped 1D carbon nanorods,denoted as Co,Mn-N/CNR and hereafter.Using electron microscopy and X-ray absorption spectroscopy(XAS)techniques,we verify the uniform dispersion of CoN4and MnN4atomic sites and confirm the effect of Co doping on the MnN_(4) electronic structure.Density functional theory(DFT)calculations further elucidate that the energy barrier of ratedetermining step(^(*)OH desorption)decreases over the 2 N-bridged MnCoN_(6) moieties related to the pure MnN_(4).This work provides an effective strategy to modulate the local coordination environment and electronic structure of MnN_(4) active sites for improving their ORR activity and stability.展开更多
目的探讨NOTCH3基因第5外显子C260S位点突变导致的伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病(cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL)家系的临床和影像学...目的探讨NOTCH3基因第5外显子C260S位点突变导致的伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病(cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL)家系的临床和影像学特征。方法选取2021年12月首都医科大学附属北京同仁医院来自同一家庭的CADASIL患者,对所有患者进行NOTCH3基因测序,回顾性分析患者的临床表现和头颅影像学特征。复习既往文献报道的导致同一位置氨基酸改变的其他突变类型的临床及影像学特征。结果4名家庭成员中,包括先证者(46岁,女)及其两个姐姐(分别为48岁和50岁)和女儿(18岁)。先证者及其父亲、两个姐姐都有偏头痛病史,其中大姐有记忆力减退;先证者患有脑梗死及伴有视觉先兆的偏头痛;先证者女儿体健;先证者父亲因脑梗死去世。4名家庭成员均存在C260S位点的NOTCH3基因突变。既往文献无此位点突变的报道,先证者头颅MRI示右侧脑桥亚急性梗死,颞叶、脑室周围及脑干异常高信号改变,其大姐脑桥可见腔隙性梗死灶。结论NOTCH3基因第5外显子c.778T>A(p.C260S)的罕见突变导致的CADASIL发病时间早,早期会出现认知障碍。合并偏头痛的脑干梗死患者,需警惕CADASIL的可能。展开更多
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi...Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
基金Supported by Regional Science Foundation Project of the National Natural Science Foundation of China(No.82060827,No.82260891)The Key Discipline of Universities in the“14th Five-Year Plan”Autonomous Region-Traditional Chinese Medicine at Xinjiang Medical University.
文摘●AIM:To investigate the underlying mechanism of dry environment(autumn dryness)affecting the lacrimal glands in rats.●METHODS:Twenty Sprague-Dawley rats were randomly divided into two groups.The rats were fed in specific pathogen free environment as the control group(n=10),and the rats fed in dry environment as the dryness group(n=10).After 24d,lacrimal glands were collected from the rats.The tissues morphology was observed by hematoxylineosin(HE)staining.Tandem mass tags(TMT)quantitative proteomics analysis technology was used to screen the differential expressed proteins of lacrimal glands between the two groups,then bioinformatics analysis was performed.Further,the immunohistochemical(IHC)method was used to verify the target proteins.●RESULTS:In dryness group,the lacrimal glands lobule atrophied,the glandular cavities enlarged,the sparse nuclear distribution and scattered inflammatory infiltration between the acinus were observed.The proteomics exhibited that a total of 195 up-regulated and 236 downregulated differential expressed proteins screened from the lacrimal glands of rats.It was indicated that the biological processes(BP)of differential expressed proteins mainly included cell processes and single BP.The cellular compositions of differential expressed proteins mainly located in cells,organelles.The molecular functions of differential expressed proteins mainly included binding,catalytic activity.Moreover,the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis showed that the differential expressed proteins mainly involved lysosome,complement and coagulation cascade,and ribosome pathway.The IHC result verified that the up-regulated expression proteins of Protein S100A9(S100A9),Annexin A1(Anxa1),and Clusterin(Clu)in lacrimal glands of rats in dryness group were higher than control group.●CONCLUSION:The up-regulated expression proteins of S100A9,Anxa1,and Clu may be the potential mechanisms of dry eye symptoms caused by dry environment.This study provides clues of dry environments causing eye-related diseases for further studies.
文摘Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease.
基金the financial support from the Research Foundation for Talented Scholars of Hainan University(YEAZ22091)the financial supports from the Joint Funds of the National Natural Science Foundation of China(ZK20180055)+1 种基金the Programs for Foreign Talent(G2021106012L)the National Natural Science Foundation of China(22075290)。
文摘Carbon-based N-coordinated Mn(Mn-N_(x)/C)single-atom electrocatalysts are considered as one of the most desirable non-precious oxygen reduction reaction(ORR)candidates due to their insignificant Fenton reactivity,high abundance,and intriguing electrocatalytic performance.However,current MnN_(x)/C single-atom electrocatalysts suffer from high overpotentials because of their low intrinsic activity and unsatisfactory chemical stability.Herein,through an in-situ polymerization-assisted pyrolysis,the Co as a second metal is introduced into the Mn-N_(x)/C system to construct Co,Mn-N_(x)dual-metallic sites,which atomically disperse in N-doped 1D carbon nanorods,denoted as Co,Mn-N/CNR and hereafter.Using electron microscopy and X-ray absorption spectroscopy(XAS)techniques,we verify the uniform dispersion of CoN4and MnN4atomic sites and confirm the effect of Co doping on the MnN_(4) electronic structure.Density functional theory(DFT)calculations further elucidate that the energy barrier of ratedetermining step(^(*)OH desorption)decreases over the 2 N-bridged MnCoN_(6) moieties related to the pure MnN_(4).This work provides an effective strategy to modulate the local coordination environment and electronic structure of MnN_(4) active sites for improving their ORR activity and stability.
文摘目的探讨NOTCH3基因第5外显子C260S位点突变导致的伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病(cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL)家系的临床和影像学特征。方法选取2021年12月首都医科大学附属北京同仁医院来自同一家庭的CADASIL患者,对所有患者进行NOTCH3基因测序,回顾性分析患者的临床表现和头颅影像学特征。复习既往文献报道的导致同一位置氨基酸改变的其他突变类型的临床及影像学特征。结果4名家庭成员中,包括先证者(46岁,女)及其两个姐姐(分别为48岁和50岁)和女儿(18岁)。先证者及其父亲、两个姐姐都有偏头痛病史,其中大姐有记忆力减退;先证者患有脑梗死及伴有视觉先兆的偏头痛;先证者女儿体健;先证者父亲因脑梗死去世。4名家庭成员均存在C260S位点的NOTCH3基因突变。既往文献无此位点突变的报道,先证者头颅MRI示右侧脑桥亚急性梗死,颞叶、脑室周围及脑干异常高信号改变,其大姐脑桥可见腔隙性梗死灶。结论NOTCH3基因第5外显子c.778T>A(p.C260S)的罕见突变导致的CADASIL发病时间早,早期会出现认知障碍。合并偏头痛的脑干梗死患者,需警惕CADASIL的可能。
基金supported by Jiangsu Provincial Medical Key Discipline,No.ZDXK202217(to CFL)Jiangsu Planned Projects for Postdoctoral Research Funds,No.1601056C(to SL).
文摘Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.