期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
One-pot synthesis of arginine modified hydroxyapatite carbon microsphere composites for efficient removal of U(Ⅵ) from aqueous solutions 被引量:4
1
作者 Dongxu Yang Xiangxue Wang +6 位作者 Gang Song Guixia Zhao Zhe Chen Shujun Yu Pengcheng Gu Hongqing Wang Xiangke Wang 《Science Bulletin》 SCIE EI CAS CSCD 2017年第23期1609-1618,共10页
Uranium was not only the main source of nuclear energy but also one of the long-lived radionuclide.Herein, a novel arginine modified hydroxyapatite carbon microsphere composites(defined as C@HAp/Arg) obtained promptly... Uranium was not only the main source of nuclear energy but also one of the long-lived radionuclide.Herein, a novel arginine modified hydroxyapatite carbon microsphere composites(defined as C@HAp/Arg) obtained promptly via a one-step mild hydrothermal method, was applied to remove U(Ⅵ) from aqueous solutions. Based on the characterization of transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier transformed infrared spectroscopy(FT-IR), X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS), the synthesized C@HAp/Arg presented globular morphology and abundant functional groups(e.g., —COO^-), which were beneficial to its combination with U(Ⅵ). The interaction mechanism and removal capability of U(Ⅵ) on C@HAp/Arg were studied by batch adsorption technique and spectroscopy analysis. The results implied that U(Ⅵ) can form strong surface complexes on C@HAp/Arg. The kinetics adsorption of U(Ⅵ) followed pseudo-second-order kinetic model with high removal efficiency($95% within 5h at pH 5.0). The adsorption isotherms were well fitted by Langmuir model, implying that U(Ⅵ) uptake on C@HAp/Arg was monolayer coverage. It was found that the maximum adsorption capacities of CSs, C@HAp and C@HAp/Arg toward U(Ⅵ) were calculated to be 23.16,72.09 and 569.66 mg/g, respectively, at 298.15 K and pH 5.0, and thermodynamic parameters revealed that the adsorption processes of U(Ⅵ) were spontaneous and endothermic. In addition, effect of co-existed ions and CO_3^(2-)concentrations demonstrated that U(Ⅵ) adsorption on C@HAp/Arg was weakly interfered by foreign ions and carbonate concentrations. More importantly, the adsorption performance of U(Ⅵ) on C@HAp/Arg was still over $87% after five cycles. Therefore, it was noted that the versatile C@HAp/Arg could be potentially used as a powerful building block for the enrichment and disposal of U(Ⅵ) from aqueous solutions, which could efficiently reduce the potential toxicity of U(Ⅵ) in the U(Ⅵ)-contaminated water. 展开更多
关键词 U(Ⅵ) c@hap/arg composites Interaction mechanism Adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部