目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈...目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。展开更多
目的为了提升生成对抗网络汉字风格迁移的图像生成质量,实现汉字智能生成在字库产业中的实际应用,提出了一种基于直观汉字构形学的条件生成对抗网络字体生成优化方法(Optimizationof Conditional Fonts Generation with Chinese Charact...目的为了提升生成对抗网络汉字风格迁移的图像生成质量,实现汉字智能生成在字库产业中的实际应用,提出了一种基于直观汉字构形学的条件生成对抗网络字体生成优化方法(Optimizationof Conditional Fonts Generation with Chinese Character Configuration GANs,C^(3)-GAN)。方法建构了直观汉字构形模组(C^(3)Module),该模组包含了利于条件生成对抗网络进行汉字构形语义特征学习的全特征汉字字符集。C^(3)-GAN在条件生成对抗网络模型下进行字体生成训练,降低了必要训练样本数量,实现对字体生成效果的优化。结果使用C^(3)-GAN生成汉字图像的清晰度更高、字形更准确。在图像相似性定量评估中,使用C^(3)-GAN的实验组相比于其他模型,获得了更高的相似值和更小的误差值。结论使用C^(3)-GAN可以降低必要训练样本数量、提升汉字图像质量。在实际项目中具有一定的应用性和可操作性。展开更多
Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dyn...Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.展开更多
基金jointly supported by the National Natural Science Foundation of China(No.22273093,No.41905018,No.21903080)the Ministry of Science and Technology of China(No.2022YFF0606500)。
文摘目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。
文摘目的为了提升生成对抗网络汉字风格迁移的图像生成质量,实现汉字智能生成在字库产业中的实际应用,提出了一种基于直观汉字构形学的条件生成对抗网络字体生成优化方法(Optimizationof Conditional Fonts Generation with Chinese Character Configuration GANs,C^(3)-GAN)。方法建构了直观汉字构形模组(C^(3)Module),该模组包含了利于条件生成对抗网络进行汉字构形语义特征学习的全特征汉字字符集。C^(3)-GAN在条件生成对抗网络模型下进行字体生成训练,降低了必要训练样本数量,实现对字体生成效果的优化。结果使用C^(3)-GAN生成汉字图像的清晰度更高、字形更准确。在图像相似性定量评估中,使用C^(3)-GAN的实验组相比于其他模型,获得了更高的相似值和更小的误差值。结论使用C^(3)-GAN可以降低必要训练样本数量、提升汉字图像质量。在实际项目中具有一定的应用性和可操作性。
文摘Generally,the field of fixed point theory has attracted the attention of researchers in different fields of science and engineering due to its use in proving the existence and uniqueness of solutions of real-world dynamic models.C^(∗)-algebra is being continually used to explain a physical system in quantum field theory and statistical mechanics and has subsequently become an important area of research.The concept of a C^(∗)-algebra-valued metric space was introduced in 2014 to generalize the concept of metric space.In fact,It is a generalization by replacing the set of real numbers with a C^(∗)-algebra.After that,this line of research continued,where several fixed point results have been obtained in the framework of C^(∗)-algebra valued metric,aswell as(more general)C^(∗)-algebra-valued b-metric spaces andC^(∗)-algebra-valued extended b-metric spaces.Very recently,based on the concept and properties of C^(∗)-algebras,we have studied the quasi-case of such spaces to give a more general notion of relaxing the triangular inequality in the asymmetric case.In this paper,we first introduce the concept of C^(∗)-algebra-valued quasi-controlledK-metric spaces and prove some fixed point theorems that remain valid in this setting.To support our main results,we also furnish some exampleswhichdemonstrate theutility of ourmainresult.Finally,as an application,we useour results to prove the existence and uniqueness of the solution to a nonlinear stochastic integral equation.