期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
对模糊集、Vague集和C^*-模糊集的比较研究
1
作者 田一鸣 黄友锐 黄宜庆 《安徽理工大学学报(自然科学版)》 CAS 2008年第3期38-41,共4页
模糊集、Vague集和C*-模糊集(新模糊集)都是对经典集合论的扩展,同时又是模糊集合论分支的发展成果。为完善模糊理论体系并将其有效应用,在介绍了三种集合的概念的基础上,分析了它们之间的区别和内在联系并参考与概率论统一定义的C*-模... 模糊集、Vague集和C*-模糊集(新模糊集)都是对经典集合论的扩展,同时又是模糊集合论分支的发展成果。为完善模糊理论体系并将其有效应用,在介绍了三种集合的概念的基础上,分析了它们之间的区别和内在联系并参考与概率论统一定义的C*-模糊集合框架,提出了新Vague关系,使得在处理不确定问题的领域中有了完备的理论基础。最后对三个集合的发展和应用作了一些探讨性研究。 展开更多
关键词 C^*-模糊集 VAGUE集 模糊集
下载PDF
Zadeh模糊集合理论的缺陷及其改进:C*-模糊集合理论 被引量:11
2
作者 高庆狮 《北京科技大学学报》 EI CAS CSCD 北大核心 2005年第5期513-519,共7页
分析和证明了Zadeh模糊集合理论的三个缺点和两个错误,提出了一个考虑模糊集合之间关系,并且用相关系数来刻画这种关系的程度的新模糊集合理论(系统)——C*-模糊集合理论(系统).新理论(系统)能克服Zadeh模糊集合理论的三个缺点和两个错... 分析和证明了Zadeh模糊集合理论的三个缺点和两个错误,提出了一个考虑模糊集合之间关系,并且用相关系数来刻画这种关系的程度的新模糊集合理论(系统)——C*-模糊集合理论(系统).新理论(系统)能克服Zadeh模糊集合理论的三个缺点和两个错误;能正确地描绘客观世界的全部模糊现象;有补集;隶属度有统一的计算公式;并且是经典集合系统的特例,能满足全部经典集合的公式,与正常思维、逻辑和概念一致. 展开更多
关键词 集合 模糊集 Zadeh模糊集合理论:C^*-模糊集合理论
下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
3
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy C-means shadowed sets shadowed C-means feature weights cluster validity index
下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
4
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部