Suppose that 0→ I→ A→ A/I→ 0 is a tracially quasidiagonal extension of C*-algebras. In this paper, the authors give two descriptions of the K_0, K_1 index maps which are induced by the above extension and show tha...Suppose that 0→ I→ A→ A/I→ 0 is a tracially quasidiagonal extension of C*-algebras. In this paper, the authors give two descriptions of the K_0, K_1 index maps which are induced by the above extension and show that for any ∈ > 0, any τ in the tracial state space of A/I and any projection p ∈ A/I(any unitary u ∈ A/I), there exists a projection p ∈ A(a unitary u ∈ A) such that |τ(p)-τ(π(p))| < ∈(|τ(u)-τ(π(u))| < ∈).展开更多
Let 0 →I → A →A/I →0 be a short exact sequence of C^*-algebras with A unital. Suppose that I has tracial topological rank no more than one and A/I belongs to a class of certain C^*-algebras. We show that A has t...Let 0 →I → A →A/I →0 be a short exact sequence of C^*-algebras with A unital. Suppose that I has tracial topological rank no more than one and A/I belongs to a class of certain C^*-algebras. We show that A has trazial topological rank no more than one if the extension is quasidiagonal, and A has the property (P1) if the extension is tracially quasidiagonal.展开更多
We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self abs...We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11871375,11371279,11601339)Zhejiang Provincial Natural Science Foundation of China(No.LY13A010021)
文摘Suppose that 0→ I→ A→ A/I→ 0 is a tracially quasidiagonal extension of C*-algebras. In this paper, the authors give two descriptions of the K_0, K_1 index maps which are induced by the above extension and show that for any ∈ > 0, any τ in the tracial state space of A/I and any projection p ∈ A/I(any unitary u ∈ A/I), there exists a projection p ∈ A(a unitary u ∈ A) such that |τ(p)-τ(π(p))| < ∈(|τ(u)-τ(π(u))| < ∈).
基金supported by National Natural Science Foundation of China (Grant No. 11071188)
文摘Let 0 →I → A →A/I →0 be a short exact sequence of C^*-algebras with A unital. Suppose that I has tracial topological rank no more than one and A/I belongs to a class of certain C^*-algebras. We show that A has trazial topological rank no more than one if the extension is quasidiagonal, and A has the property (P1) if the extension is tracially quasidiagonal.
基金supported by the Research Center for Operator Algebras at East China Normal University which is funded by the Science and Technology Commission of Shanghai Municipality (Grant No.13dz2260400)National Natural Science Foundation of China (Grant No.11531003)+1 种基金Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice (Grant No.1361431)the special fund for the Short-Term Training of Graduate Students from East China Normal University。
文摘We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.